قدمت في هذه الورقة البحثية طريقة جديدة لدراسة أنصاف الزمر من المرتبة الثالثة و من المرتبة الرابعة، بغية استعراضها و تقديم وصف أفضل لها، و ذلك لملاحظتنا الازدياد الكبير بتعداد أنصاف الزمر من مراتب أعلى.
قدمت كذلك الطرائق التي كتبناها و اتبعناها في دراسة الخاصة التجميعية و خلال عملية التصنيف.
In this paper we are presenting a new method for studying the semigroups
of order three and four. We are going to explore these semigroups and
illustrate a better description of them while observing their enormous
increasing in number for larger orders.
We are presenting the methods we wrote and followed during our study of
associativity and during the classification process.
المراجع المستخدمة
Clifford, A. H. and Preston, G. B. (1961). The Algebraic Theory of Semigroups, Vol. I. Mathematical Surveys of the American Mathematical Society No.7. p.1
Griess, R. L. (1982). The friendly giant. Inventiones Mathematicae 69 (1): 1- 102
Forsythe, G. E. (1955). SWAC computes 126 distinct Semigroups of order 4. Proc. Amer. Math. Soc., 6:443-447
هدف هذا البحث إلى تسليط الضوء على نتائج كلاسيكية و تقديم مبرهنات جديدة مدعمة بالأمثلة التطبيقية المناسبة عن السلوك المقارب في جوار اللانهاية لحلول معادلات تفاضلية غير خطية من المرتبة الثالثة باستخدام المتراجحة التكاملية لبيهاري ، سوف نحصل على الشروط
من المعروف أن المجموعة (Z×Z) هي نصف زمرة بالنسبة لعملية الجمع، حيث Z مجموعة الأعداد الصحيحة. فإذا زودناها بالتبولوجيا المتقطعة (القوية), فإنها تصبح فضاء تبولوجيا منتظمًا تمامًا، و من ثم يوجد لها رص ستون.شك.
سندرس في هذا البحث السلوك المقارب لحلول معادلة تفاضلية غير خطية من المرتبة الثالثة بثابت
لابلاسي في المدى الزمني البعيد و ذلك عن طريق الاستفادة من تعميمات دنان و فرضيات بيكاركوف-ميدفيد مسـتخدمين بـذلك متراجحـة التكامل الشهيرة لبيهاري، آخذين بالحسبان
يهدف هذا البحث إلى دراسة الحلول التوزيعية لمعادلات تفاضلية جزئية من المرتبة
الثانية.
و بشكل خاص سندرس الحلول التوزيعية لمعادلة لابلاس و معادلة التسخين و معادلة
الموجة بعدة أبعاد, بالإضافة إلى معادلة شرودينجر.
سيتم عرض الحلول الأساسية للمعادلات ال
يهدف هذا البحث إلى دراسة طرائق حل المعادلة الفرقية الخطية من المرتبة الثانية بأمثال
متغيرة.
و سيتم عرض طريقة حلها و ذلك من خلال مبرهنتين مع تقديم إثباتهما و لن ننس التطرق إلى
بعض التعاريف و المفاهيم الأساسية اللازمة لذلك و عرض بعض التطبيقات عليهما.