ترغب بنشر مسار تعليمي؟ اضغط هنا

تصنيف تعابير الوجه باستخدام شبكة عصبية وخوارزمية PCA

Face Expression Classification Using Neural Network and PCA algorithm

4962   10   204   5.0 ( 1 )
 تاريخ النشر 2014
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الغاية من هذا المقال إلقاء الضوء على آلية ومراحل عمل نظام خبير , يقوم بتحديد انتماء وجه مدخل الى أي من تعابير الوجه الستة النموذجية وهي الغضب , الاشمئزاز , الخوف , السعادة , الحزن , الدهشة بالإضافة إلى الحالة الطبيعية . وذلك بتطبيق خوارزمية تحليل المكونات الأساسية PCA- principal component analysis , والمتعلقة بالعناصر الثلاث العين والحاجب والفم , خلافا للدراسات المعهودة في هذا المجال التي تعتمد على الوجه بالكامل. هذه القيم الناتجة تستخدم في تحديد شعاع صفات الوجه كقيم لدخل الشبكة العصبونية , ويتم تدريب الشبكة العصبونية باستخدام خوارزمية الانتشار الخلفي . علما أن الوجوه المستخدمة تعود لأشخاص من أعمار وعروق مختلفة .


ملخص البحث
يهدف هذا البحث إلى تطوير نظام خبير لتصنيف تعابير الوجه باستخدام خوارزمية تحليل المكونات الأساسية (PCA) والشبكات العصبية. يتم التركيز على ثلاثة عناصر رئيسية في الوجه وهي العين، الحاجب، والفم بدلاً من تحليل الوجه بالكامل. يتم استخراج شعاع الصفات من هذه العناصر واستخدامه كمدخل للشبكة العصبية التي تُدرّب باستخدام خوارزمية الانتشار الخلفي. تم اختبار النظام على مجموعة متنوعة من الوجوه من أعمار وأعراق مختلفة، وحقق النظام دقة تصنيف تصل إلى 91.2%، مما يجعله متفوقاً على بعض الطرق الأخرى المستخدمة في هذا المجال. تعتمد الطريقة المقترحة على تقسيم المناطق الفعالة من الوجه إلى أجزاء صغيرة لتقليل التشويش وتحسين دقة التصنيف.
قراءة نقدية
دراسة نقدية: على الرغم من أن البحث يقدم نتائج جيدة في تصنيف تعابير الوجه باستخدام خوارزمية PCA والشبكات العصبية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، الاعتماد على أجزاء محددة من الوجه قد يؤدي إلى فقدان بعض المعلومات الهامة التي يمكن أن تكون موجودة في أجزاء أخرى من الوجه. ثانياً، استخدام خوارزمية PCA قد يكون محدوداً في التعامل مع البيانات غير الخطية بشكل كامل، ويمكن استكشاف تقنيات أخرى مثل خوارزميات التعلم العميق لتحسين الأداء. أخيراً، لم يتم التطرق بشكل كافٍ إلى كيفية التعامل مع الصور ذات الجودة المنخفضة أو الصور التي تحتوي على تشويش كبير، وهو ما يمكن أن يؤثر على دقة التصنيف في التطبيقات العملية.
أسئلة حول البحث
  1. ما هي العناصر الثلاثة الرئيسية التي تم التركيز عليها في تحليل تعابير الوجه في هذا البحث؟

    العناصر الثلاثة الرئيسية هي العين، الحاجب، والفم.

  2. ما هي الخوارزمية المستخدمة لاستخلاص شعاع الصفات من الوجه؟

    الخوارزمية المستخدمة هي خوارزمية تحليل المكونات الأساسية (PCA).

  3. ما هي دقة التصنيف التي حققها النظام المقترح في هذا البحث؟

    النظام حقق دقة تصنيف تصل إلى 91.2%.

  4. ما هي خوارزمية التدريب المستخدمة في الشبكة العصبية؟

    خوارزمية التدريب المستخدمة هي خوارزمية الانتشار الخلفي.


المراجع المستخدمة
CALDER A, BURTON A, MILLER P, YOUNG A, AKAMATSU S, 2001- A principal component analysis of facial expressions. Vision Research 41 (2001) 1179–1208
DAILEY M, COTTRELL G,1999- PCA = Gabor for Expression Recognition. Computer Science and Engineering, University of California, San Diego
THAI L,NGUYEN N, HAI T, Member, IACSIT,2011- A Facial Expression Classification System Integrating Canny, Principal Component Analysis and Artificial Neural Network. International Journal of Machine Learning and Computing, Vol. 1, No. 4
GARG A, CHOUDHARY V, 2012- facial expression recognition using principal component analysis. International Journal of Scientific Research Engineering &Technology , Volume 1 Issue4, pp 039-042
GOSAVI A, KHOT S, 2013- Facial Expression Recognition Using Principal Component Analysis. International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3, Issue-4
قيم البحث

اقرأ أيضاً

الغاية من هذا المقال إلقاء الضوء على آلية و مراحل تصميم متحكم ضبابي عصبوني, يقوم بتحديد انتماء وجه مدخل إلى أي من تعابير الوجه الأربعة التالية و هي الفرح, الحزن, الغضب, و الخوف, و ذلك وفقا للنقاط المميزة في الوجه FCP المأخوذة من نصف الوجه, و المتعلقة بالعناصر الثلاث العين و الحاجب و نصف الفم, خلافا للدراسات المعهودة في هذا المجال الذي تعتمد على الوجه بالكامل.
التبخر هو أحد العناصر الأساسية للدورة الهيدرولوجية و ضروري للعديد من الدراسات مثل الموازنة المائية, تصميم أنظمة الري و إدارة الموارد المائية, و يتطلب تقديره معرفة العديد من العناصر المناخية. على الرغم من أن هناك صيغاً تجريبيَّةً متوفرةً لتقدير التبخر , و لكن أداء هذه الصيغ غير دقيق بسبب الطبيعة المعقدة لعملية التبخر. لذلك فإن هذا البحث يهدف لوضع نموذج شبكة عصبية صنعيَّة للتنبؤ بالتبخر الشهري في منطقة حماه باستخدام ثلاثة عناصر مناخية هي درجة الحرارة, الرطوبة النسبية و سرعة الرياح. من أجل ذلك فقد بُني النموذج باستخدام مكتبة nntool-box إحدى أدوات الـ MATLAB. استُخدمت الشبكة العصبية الصنعيَّة ذات التغذية الأمامية و الانتشار العكسي للخطأ بطبقة خفية واحدة لبناء النموذج. و تم تقييم شبكات مختلفة بعدد مختلف من العصبونات و بتغيير دوال التفعيل المستخدمة في كل طبقة. و استُخدم جذر متوسط مربع الخطأ (RMSE) لتقييم دقة النموذج المُقترح. و قد بينت الدراسة أن الشبكة العصبية الصنعيَّة ذات الهيكلية (3-14-1) هي الأفضل للتنبؤ بالتبخر في منطقة حماه حيث كانت قيمة RMSE تساوي (21.5mm/month) و قيمة R2 مساوية (0.97). توصي الدراسة باستخدام أنواع أخرى من الشبكات العصبية لتقدير التبخر.
حققت خوارزمية التعلم العميق مؤخرًا الكثير من النجاح خاصة في مجال رؤية الكمبيوتر.يهدف البحث الحالي إلى وصف طريقة التصنيف المطبقة على مجموعة البيانات الخاصة بأنواع متعددة من الصور (صور الرادار ذي الفجوة المركبةSAR والصور ليست SAR) ، أستخدم نقل التعلم م تبوعًا بأساليب الضبط الدقيق في مخطط التصنيف هذا . تم استخدام بنيات مدربة مسبقًا على قاعدة بيانات الصور المعروفهImageNet، تم استخدام نموذج VGG 16 بالفعل كمستخرج ميزات وتم تدريب مصنف جديد بناءً على الميزات المستخرجة .تركز بيانات الإدخال بشكل أساسي على مجموعة البيانات التي تتكون من خمس فئات فئة صور الرادارSAR (المنازل) وفئات الصور ليستSAR (القطط والكلاب والخيول والبشر). تم اختيار الشبكة العصبية التلافيفية (CNN) كخيار أفضل لـعملية التدريب لانها نتجت عن دقة عالية. لقد وصلنا إلى الدقة النهائية بنسبة 91.18٪ في خمس فئات مختلفة. تتم مناقشة النتائج من حيث احتمالية الدقة لكل فئة في تصنيف الصورة بالنسبة المئوية. تحصل فئة القطط على 99.6٪ ، بينما تحصل فئة المنازل على 100٪ وتحصل انواع آخرى من الفئات بمتوسط درجات 90٪ وما فوق.
لترجيل اللغة المنطوقة إلى المتوسطة المكتوبة، تمكن معظم الحروف الهجائية قاعدة صوتية لا لبس فيها.ومع ذلك، فقد نأت بعض أنظمة الكتابة أنفسهم من هذا المفهوم البسيط والعمل القليل من العمل في معالجة اللغة الطبيعية (NLP) على قياس المسافة.في هذه الدراسة، نستخ دم نموذج شبكة عصبي اصطناعي (آن) لتقييم الشفافية بين الكلمات المكتوبة ونطقها، وبالتالي تسميته تقدير الشفافية الذاتية مع آن (Oteann).بناء على مجموعات البيانات المستمدة من قواميس ويكيميديا، ندربنا هذا النموذج واختبر هذا النموذج لتسجيل النسبة المئوية للتنبؤات الخاطئة في مهام الترجمة من PhoneMe-to-grapheme و grapheme-to-phoneme.كانت الدرجات التي تم الحصول عليها على 17 تقييدا تتماشى مع تقديرات الدراسات الأخرى.ومن المثير للاهتمام، أن النموذج قدم أيضا نظرة ثاقبة أخطاء نموذجية مصنوعة من المتعلمين الذين ينظرون فقط في الحكم الصوتي في القراءة والكتابة.
تتضمن هذه الدراسة إمكانية استخدام الشبكات العصبية الاصطناعية مع خوارزمية الانتشار العكسي في التنبؤ قصير المدى بمناسيب بحيرة قطينة على نهر العاصي, مع الإشارة على أن البيانات المستخدمة هي بيانات مناسيب المياه في البحيرة و بيانات الأمطار للفترة الممتدة بين ( 1\5\2007 - 28\2\2009 ).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا