ترغب بنشر مسار تعليمي؟ اضغط هنا

Tribrim: تصنيف الموقف مع كشف عدم التناقض العصبي

Tribrid: Stance Classification with Neural Inconsistency Detection

628   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ندرس مشكلة أداء تصنيف الموقف التلقائي على وسائل التواصل الاجتماعي مع البنية العصبية مثل بيرت. على الرغم من أن هذه المهنة تقدم نتائج مثيرة للإعجاب، إلا أن مستواها لم يقرص بعد مع أحد البشر وقد ينتجون أخطاء له تأثير كبير على المهمة المصب (على سبيل المثال، فحص الحقائق). لتحسين الأداء، نقدم الهندسة المعمارية العصبية الجديدة حيث تتضمن المدخلات أيضا وجهات نظر مفاجئة تلقائيا بسبب مطالبة معينة. يتم تعلم النموذج بشكل مشترك إجراء توقعات متعددة في وقت واحد، والتي يمكن استخدامها إما لتحسين تصنيف المنظور الأصلي أو لتصفية التنبؤات المشكوك فيها. في الحالة الأولى، نقترح طريقة خاضعة للإشراف ضعيفا للجمع بين التنبؤات في نهائي. في الحالة الثانية، نوضح أن استخدام درجات الثقة لإزالة التنبؤات المشكوك فيه يسمح لطريقنا لتحقيق أداء يشبه الإنسان على المعلومات المحتجزة، والتي لا تزال جزءا كبيرا من المدخلات الأصلية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقدم نتائج جديدة لمشكلة تسلسل وضع الاستعارة، باستخدام تضمين الرؤية المتطور مؤخرا.نظهر أننا يتسلسلون مثل هذه الأنشطة إلى مدخلات بيلستمية يحصلون على تحسينات متسقة ومهمة أي تكلفة تقريبا، ونقدم المزيد من النتائج المحسنة عند الجمع بين تضمين الرؤية مع بيرت.
يحدد اكتشاف الموقف ما إذا كان مؤلف النص مؤهلا لصالح أو محايد هدف معين ويوفر رؤى قيمة في أحداث مهمة مثل تقنين الإجهاض. على الرغم من التقدم الكبير في هذه المهمة، فإن أحد التحديات المتبقية هو ندرة التعليقات التوضيحية. علاوة على ذلك، ركزت معظم الأعمال ال سابقة على تدريبا ثابتا على التسمية التي يتم فيها التخلص منها تشابه ذات معنى بين الفئات أثناء التدريب. لمعالجة هذه التحديات أولا، نقيم هدف متعدد المستهدف وإعدادات تدريب متعددة البيانات من خلال تدريب نموذج واحد على كل مجموعة بيانات ومجموعات من المجالات المختلفة، على التوالي. نظهر أن النماذج يمكن أن تتعلم المزيد من التمثيلات العالمية فيما يتعلق بالأهداف في هذه الإعدادات. ثانيا، يمكننا التحقيق في تقطير المعرفة في اكتشاف الموقف ومراقبة أن نقل المعرفة من نموذج المعلم إلى نموذج الطالب يمكن أن يكون مفيدا في إعدادات التدريب المقترحة. علاوة على ذلك، نقترح طريقة تقطير المعرفة التكيفية (AKD) تطبق تحجيم درجة الحرارة الخاصة بالمثيلات إلى المعلم والتنبؤات الطلابية. تشير النتائج إلى أن نموذج متعدد البيانات يعمل بشكل أفضل على جميع مجموعات البيانات ويمكن تحسينه من قبل AKD المقترح، مما يتفوق على أحدث حالة من الهامش الكبير. نحن نطلق علنا ​​كودنا.
تحديد القروض المعجمية، ونقل الكلمات بين اللغات، هي ممارسة أساسية لللغويات التاريخية وأداة حيوية في تحليل اتصال اللغة والأحداث الثقافية بشكل عام.نسعى لتحسين الأدوات للكشف التلقائي للقروض المعجمية، مع التركيز هنا على الكشف عن الكلمات المقترضة من نصوص ا لكلمات أحادية الأحادية.بدءا من نموذج اللغة المعجمية العصبية المتكررة ونهج انتروبيات المنافسة، فإننا ندمج نموذجا أكثر قائما على المحولات القائمة على المحولات.من هناك، نقوم بتجربة العديد من النماذج والنهج المختلفة بما في ذلك نموذج الجهات المانحة المعجمية مع قائمة الكلمات المعززة.يقلل نموذج المحول وقت التنفيذ ويحسن الحد الأدنى للكشف عن الاقتراض.نموذج المانحين المعزز يظهر بعض الوعد.هناك حاجة إلى تغيير موضوعي في النهج أو النموذج لإجراء مكاسب كبيرة في تحديد القروض المعجمية.
يتم تطبيق مصنف النصوص بانتظام على النصوص الشخصية، وترك مستخدمي هذه المصنفين عرضة لخرق الخصوصية.نقترح حلا لتصنيف النص الذي يحفظه الخصوصية التي تعتمد على الشبكات العصبية التنافعية (CNNS) والحساب الآمن متعدد الأحزاب (MPC).تتيح طريقتنا استنتاج تسمية فئة لنص شخصي بهذه الطريقة (1) لا يتعين على مالك النص الشخصي الكشف عن نصها لأي شخص بطريقة غير مشفرة، و (2) مالك النصلا يتعين على المصنف أن يكشف عن المعلمات النموذجية المدربة إلى مالك النص أو أي شخص آخر.لإظهار جدوى بروتوكولنا لتصنيف النص الخاص العملي، نفذناها في Fronten Fresk Framepten المستندة إلى Pytorch، باستخدام مخطط تقاسم سري معروف جيدا في الإعداد الصادق وغير الغريب.نحن نختبر وقت تشغيل مصنف نصي المحفوظ في الخصوصية لدينا، وهو سريع بما يكفي لاستخدامه في الممارسة العملية.
يشكل الاستخدام الواسع للإنترنت والنشر السريع للمعلومات التحدي المتمثل في تحديد صحة محتواه. اكتشف الكشف عن الموقف، الذي تعد مهمة التنبؤ بموقف نص فيما يتعلق بهدف محدد (سؤال المطالبة أو النقاش)، لتحديد صحة المعلومات في مهام مثل تصنيف الشائعات والكشف عن الأخبار المزيفة. في حين أن معظم الأعمال ومجموعات البيانات المتاحة للكشف عن الموقف يعالج النصوص القصيرة مقتطفات مستخرجة من الحوارات النصية، أو منصات وسائل التواصل الاجتماعي، أو عناوين الأخبار مع التركيز القوي على اللغة الإنجليزية، فهناك نقص في الموارد المستهدفة للنصوص الطويلة بلغات أخرى. مساهمتنا في هذه الورقة هي ذات شقين. أولا، نقدم مجموعة بيانات ألمانية من أسئلة النقاش والمقالات الإخبارية التي يتم تفاحها يدويا للكشف عن الموقف والعاطفة. ثانيا، نستفيد من مجموعة البيانات لمعالجة المهمة الخاضعة للإشراف على تصنيف موقف مقال إخباري فيما يتعلق بمسألة النقاش وتوفير نماذج خط الأساس كمرجع للعمل في المستقبل بشأن اكتشاف الموقف في المقالات الإخبارية الألمانية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا