في حين أن طرازات اللغة المدربة مسبقا (PTLMS) حققت نجاحا ملحوظا في العديد من مهام NLP، إلا أنها ما زالوا يكافحون من أجل المهام التي تتطلب منطق الحدث الزمني، وهو أمر ضروري للتطبيقات المرن في الحدث. نقدم نهجا مستمرا مسبقا يزود PTLMS مع المعرفة المستهدفة حول العلاقات الزمنية للحدث. نقوم بتصميم أهداف التعلم ذات الإشراف الذاتي لاستعادة الحدث الملثمان والمؤشرات الزمنية وتمييز الأحكام من نظرائهم الفاسد (حيث تم استبدال الحدث أو المؤشرات الزمنية). بمزيد من التدريب مسبقا PTLM مع هذه الأهداف بشكل مشترك، نعزز انتباهها إلى الحدث والمعلومات الزمنية، مما أدى إلى تعزيز القدرة المعززة على المنطق الزمني للحدث. هذا ** e ** ffective ** con ** إطار ما قبل التدريب المعدني ** ه ** تنفيس ** T ** منطق Emporal (Econet) يحسن عروض الضبط الدقيقة PTLMS عبر خمسة استخراج العلاقات والسؤال وتحقق عروضا جديدة أو على قدم المساواة في معظم مهامنا المصب لدينا.
While pre-trained language models (PTLMs) have achieved noticeable success on many NLP tasks, they still struggle for tasks that require event temporal reasoning, which is essential for event-centric applications. We present a continual pre-training approach that equips PTLMs with targeted knowledge about event temporal relations. We design self-supervised learning objectives to recover masked-out event and temporal indicators and to discriminate sentences from their corrupted counterparts (where event or temporal indicators got replaced). By further pre-training a PTLM with these objectives jointly, we reinforce its attention to event and temporal information, yielding enhanced capability on event temporal reasoning. This **E**ffective **CON**tinual pre-training framework for **E**vent **T**emporal reasoning (ECONET) improves the PTLMs' fine-tuning performances across five relation extraction and question answering tasks and achieves new or on-par state-of-the-art performances in most of our downstream tasks.
المراجع المستخدمة
https://aclanthology.org/
منطق العموم الزمني هي مهمة صعبة لأنها تتطلب المعرفة الزمنية عادة غير صريحة في النص.في هذا العمل، نقترح نموذج فرقة لسبب المنظمات الزمنية.يعتمد نموذجنا على تمثيلات سياقية مدربة مسبقا من نماذج اللغة القائمة على المحولات (IE، Bert)، وعلى مجموعة متنوعة من
الكشف عن الأحداث وتطورها عبر الزمن مهمة حاسمة في فهم اللغة الطبيعية. المناهج العصبية الأخيرة لحدث استخراج العلاقات الزمنية عادة الأحداث عادة إلى التشرد في مساحة Euclidean وتدريب مصنف للكشف عن العلاقات الزمنية بين أزواج الأحداث. ومع ذلك، لا يمكن للمشر
أداء النماذج العصبية للتعرف على الكيان المسمى يتحلل مع مرور الوقت، أصبحت قديمة.هذا التدهور يرجع إلى الانجراف الزمني، والتغيير في الخصائص الإحصائية المتغيرات المستهدفة لدينا مع مرور الوقت.هذه المسألة مشكلة خاصة لبيانات وسائل التواصل الاجتماعي، حيث تتغ
تعرض مشكلة الإجابة على الأسئلة التي تستخدم المعرفة من طرازات اللغة المدربة مسبقا (LMS) ورسم الرسوم البيانية المعرفة (KGS) تحديين: بالنظر إلى سياق ضمان الجودة (اختيار الأسئلة والأجوبة)، فإن الأساليب تحتاج إلى (I) تحديد المعرفة ذات الصلة من KGS الكبيرة
يحقق نماذج اللغة المستردة مسبقا للمحولات نتائج رائعة في العديد من معايير NLU المعروفة. ومع ذلك، في حين أن أساليب المحاكمات مريحة للغاية، فهي مكلفة من حيث الوقت والموارد. هذا يدعو إلى دراسة تأثير حجم البيانات المحدد على معرفة النماذج. نستكشف هذا التأث