مع النجاح المبكر لمساعدات الإجابة في الاستعلام مثل Alexa و Siri، فإن محاولات البحث لتوسيع إمكانات النظام من أتمتة خدمة التعامل هي الآن وفيرة. ومع ذلك، فقد عثرت الأنظمة الأولية بسرعة على عدم كفاية في الاعتماد على تقنيات التصنيف البسيطة لتحقيق مهمة الأتمتة بشكل فعال. التحدي الرئيسي هو أن الحوار يتضمن في كثير من الأحيان التعقيد في نوايا المستخدم (أو أغراض) معتلقها، مع مراعاة التغيير التلقائي، ويصعب تتبعه. علاوة على ذلك، لم تعتبر مجموعات البيانات العامة هذه المضاعفات والشروح الدلالية العامة غير موجودة والتي قد تؤدي إلى مشكلة تسديدة صفرية. بدافع من ما ورد أعلاه، نقترح شبكة انتباه بيرت علم الملصقات (Laban) للكشف عن الصفر طلقة متعددة النوايا. نقوم أولا بتشفير كلمات الإدخال مع بيرت وبناء مساحة مضمنة تسمية من خلال النظر في دلالات مضمنة في ملصقات النوايا. ثم يتم تصنيف كلمة الإدخال بناء على أوزان الإسقاط على كل تضمين نية في هذه المساحة المضمنة. نظهر أنه تمتد بنجاح إلى عدد قليل من الإعدادات / الصفر، حيث يكون جزء من ملصقات النوايا غير مرئية في بيانات التدريب، من خلال مراعاة الدلالات أيضا في هذه الملصقات النية غير المرئية. تظهر النتائج التجريبية أن نهجنا قادر على اكتشاف العديد من الملصقات النية غير المرئية بشكل صحيح. كما أنه يحقق الأداء الحديثة في خمس مجموعات بيانات متعددة النوايا في الحالات العادية.
With the early success of query-answer assistants such as Alexa and Siri, research attempts to expand system capabilities of handling service automation are now abundant. However, preliminary systems have quickly found the inadequacy in relying on simple classification techniques to effectively accomplish the automation task. The main challenge is that the dialogue often involves complexity in user's intents (or purposes) which are multiproned, subject to spontaneous change, and difficult to track. Furthermore, public datasets have not considered these complications and the general semantic annotations are lacking which may result in zero-shot problem. Motivated by the above, we propose a Label-Aware BERT Attention Network (LABAN) for zero-shot multi-intent detection. We first encode input utterances with BERT and construct a label embedded space by considering embedded semantics in intent labels. An input utterance is then classified based on its projection weights on each intent embedding in this embedded space. We show that it successfully extends to few/zero-shot setting where part of intent labels are unseen in training data, by also taking account of semantics in these unseen intent labels. Experimental results show that our approach is capable of detecting many unseen intent labels correctly. It also achieves the state-of-the-art performance on five multi-intent datasets in normal cases.
المراجع المستخدمة
https://aclanthology.org/
مع التعلم Landit العديد المصنعة، يمكن تدريب النماذج بناء على ردود فعل إيجابية وسالبة وردت للتنبؤات التاريخية، دون الحاجة إلى البيانات المسمى.ومع ذلك، غالبا ما تكون هذه الملاحظات متوفرة في أنظمة الحوار في العالم الحقيقي، ومع ذلك، فإن الهندسة المعمارية
يعادل الافتقار إلى بيانات التقييم المتاحة للجمهور لغات الموارد المنخفضة التقدم المحرز في فهم اللغة المنطوقة (SLU).نظرا لأن المهام الرئيسية مثل تصنيف النوايا وملء الفتحات تتطلب بيانات تدريبية وفيرة، فمن المستحسن إعادة استخدام البيانات الحالية بلغات ال
نقدم دراسة منهجية حول الكشف عن النية متعددة اللغات والتبلغة من البيانات المنطوقة.تنفد الدراسة على أن مورد جديد تم طرحه في هذا العمل، الذي يطلق عليه عقول -14، وهو موارد تدريب وتقييم أول مهمة معرف مع البيانات المنطوقة.ويغطي 14 حداثة مستخرجة من نظام تجا
الطريقة التي يتم إنشاؤها ونشرها قد تغيرت بشكل كبير خلال العقد الماضي.إن تحديد المنظور السياسي يشكل طريقة مناقشة الأحداث المناقشة في وسائل الإعلام أكثر أهمية بسبب الزيادة الحادة في عدد منافذ الأخبار والمقالات.الأساليب السابقة عادة ما تستفيد فقط المعلو
يعرض عدم وجود بيانات تدريبية تحديا كبيرا لتحجيم فهم اللغة المنطوقة لغات الموارد المنخفضة.على الرغم من أن نهج تكبير البيانات المختلفة قد اقترحت توليف البيانات التدريبية في لغات مستهدفة منخفضة الموارد، فإن مجموعات البيانات المعززة غالبا ما تكون صاخبة،