تدابير السيكومترية للقدرة والمواقف والتصورات والمعتقدات أمر حاسم لفهم سلوك المستخدم في سياقات مختلفة بما في ذلك الصحة والأمن والتجارة الإلكترونية والتمويل. تقليديا، تم قياس الأبعاد السيكومترية وجمعها باستخدام الأساليب المستندة إلى المسح. استنتاج مثل هذه البنيات من النص الذي تم إنشاؤه من قبل المستخدم قد يسمح بجمع وتحليلات غير مزعجة في الوقت المناسب. في هذه الورقة، نقوم ببذل جهودنا لبناء كوربوس لمعالجة اللغة الطبيعية السيكومترية (NLP) المتعلقة بالأبعاد الهامة مثل الثقة والقلق والحساب ومحو الأمية، في مجال الصحة. نناقش عملية لدينا متعددة الخطوات لمحاذاة نص المستخدم بنود الاستجابة المستندة إلى المسح وتوفير نظرة عامة على الاختبار الناتج والتي تشمل التدابير النفسية القائمة على المسح والاستطلاع على النص الذي تم إنشاؤه من قبل المستخدم من 8،502 المساواة. يشمل TestBed أيضا معلومات سكانية تم الإبلاغ عنها ذاتيا، بما في ذلك العرق والجنس والعمر والدخل والتعليم - مما يوفر فرصا لقياس التحيز وأساليب تصنيف النص. نبلغ عن نتائج أولية عن استخدام النص للتنبؤ / تصنيف تسميات استجابة المسح للمستخدمين - وعلى مدى نزاهة هذه النماذج. ونناقش أيضا الآثار المهمة لعملنا ونتيجة إلى اختبار بحث NLP في المستقبل بشأن الحروض النفسية والإنصاف.
Psychometric measures of ability, attitudes, perceptions, and beliefs are crucial for understanding user behavior in various contexts including health, security, e-commerce, and finance. Traditionally, psychometric dimensions have been measured and collected using survey-based methods. Inferring such constructs from user-generated text could allow timely, unobtrusive collection and analysis. In this paper we describe our efforts to construct a corpus for psychometric natural language processing (NLP) related to important dimensions such as trust, anxiety, numeracy, and literacy, in the health domain. We discuss our multi-step process to align user text with their survey-based response items and provide an overview of the resulting testbed which encompasses survey-based psychometric measures and accompanying user-generated text from 8,502 respondents. Our testbed also encompasses self-reported demographic information, including race, sex, age, income, and education - thereby affording opportunities for measuring bias and benchmarking fairness of text classification methods. We report preliminary results on use of the text to predict/categorize users' survey response labels - and on the fairness of these models. We also discuss the important implications of our work and resulting testbed for future NLP research on psychometrics and fairness.
المراجع المستخدمة
https://aclanthology.org/
يدقق هذا البرنامج التعليمي أحدث التقدم التقني في التحليل النحوي ودور بناء الجملة في مهام معالجة اللغة الطبيعية المناسبة (NLP)، حيث يتمثل الترجمة الدلالية في الدورات الدلالية (SRL) والترجمة الآلية (MT) المهام التي لديهاكان دائما مفيدا من أدلة النحوية
يتم الاتفاق بشكل عام في مجتمع معالجة اللغة الطبيعية (NLP) على أنه ينبغي دمج الأخلاقيات في أي منهج.إدراك وفهم المفاهيم الأساسية ذات الصلة هو شرط أساسي فيما يتعلق بالمشاركة والمشاركة في الخطاب على NLP الأخلاقية.نقدم هنا مواد تعليمية جاهزة في شكل شرائح
على الرغم من كفاءتها المثبتة في المجالات الأخرى، فإن تكبير البيانات أقل شعبية في سياق معالجة اللغة الطبيعية (NLP) بسبب تعقيدها ونتائج محدودة.أظهرت دراسة حديثة (Longpre et al.، 2020) على سبيل المثال أن تعزز بيانات المهمة غير المرغوية تفشل في تعزيز أدا
هناك الآلاف من الأوراق حول معالجة اللغة الطبيعية واللغويات الحاسوبية، ولكن عدد قليل جدا من الكتب المدرسية.أصف الدافع والعملية لكتابة كتاب مدرسي في كلية حول معالجة اللغة الطبيعية، وتقديم المشورة والتشجيع للقراء الذين قد يهتمون بكتابة كتاب مدرسي خاص بهم.
نقترح نهجا لاختبار الأصالة تلقائيا في مهام الجيل حيث توجد أي تدابير تلقائية قياسية موجودة.يتناول اقتراحنا الاستخدامات الأصلية للغة، وليس بالضرورة الأفكار الأصلية.نحن نقدم خوارزمية لنهجنا وتحليل وقت التشغيل.الخوارزمية، التي تجد جميع الشظايا الأصلية في