ترغب بنشر مسار تعليمي؟ اضغط هنا

تخصيص قدرة مفردات كبيرة لطراز اللغة عبر اللغات قبل التدريب

Allocating Large Vocabulary Capacity for Cross-Lingual Language Model Pre-Training

356   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

بالمقارنة مع نماذج أحادية الأجل، تتطلب النماذج عبر اللغات عادة مفردات أكثر تعبيرية لتمثيل جميع اللغات بشكل كاف.نجد أن العديد من اللغات ممثلة تمثيلا ناقصا في نماذج اللغات الصليب الأخيرة بسبب قدرة المفردات المحدودة.تحقيقا لهذه الغاية، نقترح خوارزمية VOCAP لتحديد سعة المفردات المطلوبة لكل لغة.ومع ذلك، فإن زيادة حجم المفردات يبطئ بشكل كبير بسرعة ما قبل التدريب.من أجل معالجة المشكلات، نقترح أخذ العينات المستهدفة المستهدفة K-NN لتسريع SoftMax باهظة الثمن.تبين تجاربنا أن المفردات المتعددة اللغات المستفادة مع فوائد VOCAP نموذج اللغة المتبادلة قبل التدريب مسبقا.علاوة على ذلك، فإن أخذ العينات المستهدفة المستندة إلى K-NN تخفف الآثار الجانبية لزيادة حجم المفردات مع تحقيق أداء مماثل وسرعة ما قبل التدريب الأسرع.الرمز والمفردات متعددة اللغات المحددة متوفرة في https://github.com/bozheng-hit/vocapxlm.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذا العمل، نقدم إطارا نظريا للمعلومات يقوم بتصوير نموذج اللغة عبر اللغات قبل تعظيم المعلومات المتبادلة بين النصوص متعددة اللغات متعددة التحبيب.العرض الموحد يساعدنا على فهم الأساليب الموجودة بشكل أفضل لتعلم تمثيلات عبر اللغات.الأهم من ذلك، مستوحاة من الإطار، نقترح مهمة جديدة قبل التدريب على التعلم المتعاقل.على وجه التحديد، نعتبر زوج جملة ثنائية اللغة كأراضتين لنفس المعنى وتشجيع تمثيلاتها المشفرة أكثر مماثلة من الأمثلة السلبية.من خلال الاستفادة من كل من Corpora Monolingual والمتوازي، فإننا ندرب بشكل مشترك مهام ذريعة التحسين القدرة على التحويل المتبادلة للنماذج المدربة مسبقا.النتائج التجريبية على العديد من المعايير تظهر أن نهجنا يحقق أداء أفضل بكثير.تتوفر الكود والنماذج المدربة مسبقا في https://aka.ms/infoxlm.
حققت نماذج متعددة اللغات المدربة مسبقا أداء ملحوظا على تعلم التحويل عبر اللغات.تم تدريب بعض النماذج متعددة اللغات مثل Mbert، مدربة مسبقا على Corpora غير المسبق، وبالتالي لا يمكن تضمين تضمينات لغات مختلفة في النماذج بشكل جيد للغاية.في هذه الورقة، نهدف إلى تحسين أداء نقل اللغات المتبادل الصفر عن طريق اقتراح مهمة تدريبية مسبقا تسمى نموذج محاذاة Word-Exchange (Weal)، والذي يستخدم معلومات المحاذاة الإحصائية كمعرفة مسبقة لتوجيه الكلمة عبر اللغاتتنبؤ.نحن نقيم نموذجنا في مهمة مهام الفهم لقراءة الجهاز متعدد اللغات ومهمة واجهة اللغة الطبيعية XNLI.تظهر النتائج أن Weam يمكن أن يحسن بشكل كبير من الأداء الصفر بالرصاص.
لقد أظهر استرجاع كثيف نجاحا كبيرا لمرتبة المرور باللغة الإنجليزية.ومع ذلك، لا تزال فعاليتها للغات غير الإنجليزية غير مستكشفة بسبب الحد من الموارد التدريبية.في هذا العمل، نستكشف تقنيات نقل مختلفة لتحقيق تصنيف الوثيقة من التوضيح باللغة الإنجليزية إلى ا للغات غير الإنجليزية.تكشف تجاربنا أن التحويل المستندة إلى نموذج الطلقة الصفرية باستخدام mbert يحسن جودة البحث.نجد أن التحويل اللغوي المستهدف الأكثر إشرافا ضعيفا قادرة على المنافسة مقارنة بنقل اللغة المستهدفة القائمة على الجيل، والذي يتطلب نماذج الترجمة.
تقوم هذه الدراسات الورقية بالتحويل عبر اللغات الصفرية إلى نماذج لغة الرؤية. على وجه التحديد، نركز على البحث عن نص متعدد اللغات والفيديو واقتراح نموذجا يستند إلى المحولات التي تتعلم أن تضمينات السياق متعددة اللغات متعددة اللغات. تحت إعداد طلقة صفرية، نوضح تجريبيا أن الأداء يتحلل بشكل كبير عند الاستعلام عن نموذج الفيديو النصي متعدد اللغات مع جمل غير إنجليزية. لمعالجة هذه المشكلة، نقدم استراتيجية متعددة الاستخدامات متعددة الاستخدامات متعددة اللغات، وجمع مجموعة بيانات تعليمية متعددة اللغات متعددة اللغات (متعدد HOWTO100M) للتدريب المسبق. تشير التجارب في VTT إلى أن طريقتنا تعمل بشكل كبير على تحسين البحث عن الفيديو في اللغات غير الإنجليزية دون شروح إضافية. علاوة على ذلك، عند توفر التعليقات التوضيحية متعددة اللغات، تتفوقت طريقة لدينا على خطوط الأساس الحديثة بواسطة هامش كبير في البحث عن نص متعدد اللغات للفيديو على VTT و Vatex؛ وكذلك في البحث النص متعدد اللغات إلى الصورة على multi30k. يتوفر نموذجنا ومتعدد HOWTO100M على http://github.com/berniebear/multi-ht100m.
تشفير لغة متعددة اللغات المدربة مسبقا، مثل Bert متعدد اللغات و XLM-R، إظهار إمكانات كبيرة للتحويل الصفر - عبر اللغات. ومع ذلك، فإن هذه اللوائح متعددة اللغات لا تحيي بالتحديد الكلمات والعبارات عبر اللغات. على وجه الخصوص، يتطلب محاذاة التعلم في مساحة ا لتضمين متعددة اللغات عادة على مستوى الجملة أو المستوى الموازي على مستوى Word، وهي مكلفة يتم الحصول عليها لغات الموارد المنخفضة. بديل هو جعل التشفير متعددة اللغات أكثر قوة؛ عند ضبط التشفير باستخدام المهمة المصدرة للمهمة، نربط التشفير لتتسامح مع الضوضاء في المساحات التضمين السياقية بحيث لا تتماشى تمثيلات اللغات المختلفة بشكل جيد، لا يزال بإمكان النموذج تحقيق أداء جيد على الصفر بالرصاص عبر اللغات نقل. في هذا العمل، نقترح استراتيجية تعليمية لتدريب النماذج القوية عن طريق رسم الروابط بين الأمثلة الخصومة وحالات فشل النقل الصفرية عبر اللغات. نعتمد اثنين من أساليب التدريب القوية المستخدمة على نطاق واسع، والتدريب الخصوم والتنعيم العشوائي، لتدريب النموذج القوي المرغوب فيه. توضح النتائج التجريبية أن التدريب القوي يحسن نقل صفرية عبر اللغات على مهام تصنيف النص. التحسن هو أكثر أهمية في إعداد النقل المتبادل المعمم، حيث ينتمي زوج جمل المدخلات إلى لغتين مختلفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا