ترغب بنشر مسار تعليمي؟ اضغط هنا

التعامل مع الأخطاء المطبعية لاسترجاع المقطع المستند إلى بيرت

Dealing with Typos for BERT-based Passage Retrieval and Ranking

579   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

استرجاع المرور والترتيب هو مهمة رئيسية في الإجابة على الأسئلة المفتوحة واسترجاع المعلومات. تعتمد الأساليب الفعالة الحالية في الغالب على المستردين المعتمدين على النموذج العميق المدربين مسبقا. تم عرض هذه الأساليب نموذجا بفعالية المطابقة الدلالية بين الاستعلامات والمرورات، أيضا في وجود عدم تطابق الكلمات الرئيسية، أي الممرات ذات الصلة بالاستعلام ولكن لا تحتوي على كلمات رئيسية مهمة. في هذه الورقة، نعتبر المسترد الكثيف (DR) وطريقة استرجاع الممر، و Re-Ranker Reveer، وهي طريقة إعادة ترتيب الشعبية. في هذا السياق، نحقق رسميا كيفية استجابة هذه النماذج والتكيف مع نوع معين من عدم تطابق الكلمة الرئيسية - التي تحدث عن طريق الكلمة الأساسية التي تحدث في استفسارات. من خلال التحقيق التجريبي، نجد أن الأخطاء المطبعية يمكن أن تؤدي إلى انخفاض كبير في فعالية الاسترجاع والترتيب. بعد ذلك اقترحنا إطارا بسيطا للتدريب في الطباعة المطبعية عن DR و Bert Re-Ranker لمعالجة هذه المسألة. نظرا لنتائجنا التجريبية على مجموعة بيانات مرتبة مرور MS MARCO، بإظهار مجموعة بيانات MS MARCO، من خلال التدريب على الأخطاء المطبعية المقترحة، يمكن أن يصبح تدريب DR و Bert Re-Ranker قويا للمخططات المطبعية في الاستفسارات، مما يؤدي إلى تحسين فعالية محسنة بشكل كبير مقارنة بالنماذج المدربة دون محاسبة بشكل مناسب عن الأخطاء المطبعية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في العديد من مهام معالجة اللغة الطبيعية، تعد استرجاع مرور وإعادة التعريف بمرتبة المقطع الإجراءان الرئيسيان في إيجاد المعلومات ذات الصلة وتحديدها. بما أن كل من الإجراءين يسهمان في الأداء النهائي، فمن المهم تحسينها بشكل مشترك من أجل تحقيق تحسن متبادل. في هذه الورقة، نقترح نهج تدريب مشترك رواية لاسترجاع المقطع الكثيف وإعادة إطلاق Reranking. مساهمة رئيسية هي أننا نقدم تقطير List Norwise الديناميكي، حيث نقوم بتصميم نهج تدريبي موحد للأسرار لكل من المسترد و Re-Ranker. أثناء التقطير الديناميكي، يمكن تحسين المسترد و Re-Ranker بشكل متكامل وفقا لمعلومات بعضهم البعض. نقترح أيضا استراتيجية تكبير البيانات الهجينة لبناء مثيلات تدريب متنوعة لنهج تدريب ListWise. تظهر تجارب واسعة فعالية نهجنا على كل من بيانات MSMARCO والأسئلة الطبيعية. يتوفر الكود الخاص بنا في https://github.com/paddlepaddle/rocketqa.
نقوم بدراسة استرجاع الأجابة المتعددة، وهي مشكلة غير استكشافية تتطلب استرجاع المقاطع لتغطية إجابات مميزة متعددة لسؤال معين. تتطلب هذه المهمة نمذجة مشتركة للممرات المستردة، حيث يجب ألا تسترجع النماذج مرارا وتكرارا الممرات التي تحتوي على نفس الإجابة بتك لفة مفقودة إجابة صالحة مختلفة. يعد العمل المسبق التركيز على استرجاع الإجابة الفردية محدودا لأنه لا يستطيع السبب في مجموعة المقاطعات المشتركة. في هذه الورقة، نقدم JPR، نموذج استرجاع مقطع مشترك يركز على إعادة إطلاق Reranking. لنموذج الاحتمال المشترك للممرات المستردة، يستخدم JPR لاستخدام Reranker التلقائي الذي يختار تسلسل من المقاطع، ومجهز بخوارزميات تدريب جديدة وفك تشفيرها. بالمقارنة مع النهج المسبقة، يحقق JPR تغطية إجابة أفضل بكثير على ثلاثة مجموعات بيانات متعددة الإجابات. عند الجمع بين مسألة السؤال المصب، يتيح الاسترجاع المحسن نماذج توليد الإجابات الأكبر لأنها تحتاج إلى النظر في عدد أقل من المقاطع، وإنشاء حالة جديدة من بين الفن.
في سياق استرجاع المرفق العصبي، ندرس ثلاث تقنيات واعدة: توليد البيانات الاصطناعية، أخذ العينات السلبية، والانصهار. نحن نحقق بشكل منهجي كيف تسهم هذه التقنيات في أداء نظام الاسترجاع وكيف تكمل بعضها البعض. نقترح إطارا متعدد المراحل يتكون من التدريب المسب ق مع البيانات الاصطناعية، والضبط بشكل جيد مع البيانات المسمى، والأماينة السلبية في كلتا المرحلتين. نقوم بدراسة ست استراتيجيات أخذ العينات السلبية وتطبيقها على مرحلة ضبط الدقيقة، وكخادمة جديرة بالملاحظة، إلى البيانات الاصطناعية التي نستخدمها للتدريب المسبق. أيضا، نستكشف أساليب الانصهار التي تجمع بين السلبيات من استراتيجيات مختلفة. نقيم نظامنا باستخدام مهام استرجاع مرور اثنين للنطاق المفتوح واستخدام MS MARCO. تظهر تجاربنا أن زيادة التباين السلبي في كلتا المراحل فعالة لتحسين دقة استرجاع المرور، والأهم من ذلك، كما أنها تظهر أن توليد البيانات الاصطناعية والأماينة السلبية لها فوائد مضافة. علاوة على ذلك، فإن استخدام الانصهار من الأنواع المختلفة يسمح لنا بالوصول إلى الأداء الذي يحدد مستوى جديد من بين الفنادق في قسمين من المهام التي تقييمناها.
إحدى التحديات في استرجاع المعلومات (IR) هي مشكلة عدم تطابق المفردات، والتي تحدث عندما تكون الشروط بين الاستفسارات والمستندات مختلفة بشكل جذابي ولكنها مماثلة دلالة. في حين اقترح العمل الحديث توسيع الاستعلامات أو المستندات من خلال إثراء تمثيلاتها مع مص طلحات ذات صلة إضافية لمعالجة هذا التحدي، فإنها عادة ما تتطلب حجم كبير من أزواج المستندات لتدريب نموذج التوسع. في هذه الورقة، نقترح توسيع مستندات غير محفوظة مع إطار عمل جيل (UDEG) مع نموذج لغة مدرب مسبقا، مما يولد جمل تكميلية متنوعة للمستند الأصلي دون استخدام تسميات على أزواج المستندات للاستعلام للتدريب. لتوليد الجمل، فإننا ناضطنا بشكل غير منتفضل بإداراتهم لتوليد جمل أكثر تنوعا للتوسع المستند. نحن نتحقق من صحة إطار عملائنا على مجموعة بيانات القياسية القياسية. تظهر النتائج أن إطارنا يتفوق بشكل كبير على خطوط الأساس التوسع ذات الصلة إلى الأشعة تحت الحمراء.
في تقدير الجودة (QE)، يمكن التنبؤ بجودة الترجمة بالرجوع إلى الجملة المصدر وإخراج الترجمة الآلية (MT) دون الوصول إلى الجملة المرجعية. ومع ذلك، هناك مفارقة في أن بناء مجموعة بيانات لإنشاء نموذج QE يتطلب عمالة إنسانية غير تافهة ووقت، وقد يتطلب جهدا إضاف يا مقارنة بتكلفة بناء كائن موازي. في هذه الدراسة، لمعالجة هذه المفارقة واستخدام تطبيقات QE المختلفة، حتى في لغات الموارد المنخفضة (LRLS)، نقترح طريقة لإنشاء مجموعة بيانات Pseudo-QE الخاصة دون استخدام العمل البشري. نقوم بإجراء تحليل مقارن على مجموعة بيانات الزائفة QE باستخدام نماذج لغة متعددة اللغات مسبقا. نظرا لأننا نولد مجموعة بيانات الزائفة، فإننا نقوم بإجراء تجارب باستخدام مختلف المترجمين الأجهزة الخارجية كمجموعات اختبار للتحقق من دقة النتائج بموضوعية. أيضا، تظهر النتائج التجريبية أن البارت المتعدد اللغات يوضح أفضل أداء، ونؤكد تطبيق QE في LRLS باستخدام طرق البناء Pseudo-QE DataSet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا