ترغب بنشر مسار تعليمي؟ اضغط هنا

مجموعة بيانات تقييم واستراتيجية لبناء نموذج اختيار استجابة الاستجابة متعددة الدوران

An Evaluation Dataset and Strategy for Building Robust Multi-turn Response Selection Model

595   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أظهرت نماذج اختيار الاستجابة متعددة الدوران مؤخرا أداء مماثل للبشر في العديد من البيانات القياسية.ومع ذلك، في البيئة الحقيقية، غالبا ما تحتوي هذه النماذج على نقاط ضعف، مثل اتباع تنبؤات غير صحيحة تستند بشكل كبير على الأنماط السطحية دون فهم شامل للسياق.على سبيل المثال، غالبا ما تعطي هذه النماذج درجات عالية مرشحة للاستجابة الخاطئة التي تحتوي على العديد من الكلمات الرئيسية المتعلقة بالسياق ولكن باستخدام المضارع غير المتناقص.في هذه الدراسة، نقوم بتحليل نقاط الضعف في نماذج اختيار استجابة الاستجابة الكورية من هذا المجال ونشر مجموعة بيانات الخصومة لتقييم هذه نقاط الضعف.نقترح أيضا استراتيجية لبناء نموذج قوي في هذه البيئة الخصومة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يظهر التطوير الحديث في NLP اتجاها قويا نحو تكرير النماذج المدربة مسبقا مع مجموعة بيانات خاصة بالمجال. هذا هو الحال بشكل خاص لتوليد الاستجابة حيث تلعب العاطفة دورا مهما. ومع ذلك، لا تزال مجموعات البيانات المتعاطفية الحالية صغيرة وتأخير الجهود البحثية في هذا المجال، على سبيل المثال، تطوير Chatement-Aware Chatbots. كان التحدي الفني الرئيسي واحد هو تكلفة التسجيل يدويا الحوارات مع ملصقات العاطفة المناسبة. في هذه الورقة، نصف مجموعة بيانات فضية واسعة النطاق تتكون من حوارات من 1M المشروح ب 32 عواطف دقيقة، وثمانية نوايا استجابة متعاطفية، والفئة المحايدة. لتحقيق هذا الهدف، قمنا بتطوير خط أنابيب لجنة البيانات الرواية بدءا من بذرة صغيرة من البيانات المشروحة يدويا وتوسيع نطاقها في نهاية المطاف إلى حجم مرض. قمنا بمقارنة جودةها مقابل مجموعة بيانات ذهبية أحدث باستخدام كل من التجارب دون اتصال وطرائق التحقق من الصحة. يمكن استخدام الإجراء الناتج لإنشاء مجموعات بيانات مماثلة في نفس المجال وكذلك في المجالات الأخرى.
على الرغم من نجاح أنظمة الحوار العصبي في تحقيق أداء عال في مجلس الإدارة، لا يمكنهم تلبية متطلبات المستخدمين في الممارسة العملية، بسبب ضعف مهارات المنطق. السبب الأساسي هو أن معظم نماذج الحوار العصبي تلتقط فقط المعلومات النحوية والدلية، ولكنها تفشل في نموذج الاتساق المنطقي بين محفوظات الحوار والاستجابة الناتجة. في الآونة الأخيرة، تم اقتراح مهمة حوار جديدة متعددة الدوران، لتسهيل أبحاث التفكير الحوار. ومع ذلك، هذه المهمة صعبة، لأن هناك اختلافات طفيفة فقط بين الاستجابة غير المنطقية وتاريخ الحوار. كيفية حل هذا التحدي فعال لا يزال يستحق الاستكشاف. تقترح هذه الورقة نموذج مقارنة غرامة (FCM) لمعالجة هذه المشكلة. مستوحاة من سلوك الإنسان في فهم القراءة، يقترح تركيز آلية المقارنة على الاختلافات الجميلة في تمثيل كل مرشح استجابة. على وجه التحديد، يتم مقارنة كل تمثيل مرشح بالسجل بأكمله للحصول على تمثيل تناسق التاريخ. علاوة على ذلك، تعتبر إشارات الاتساق بين كل مرشح وتاريخ مكبر الصوت في قيادة نموذج يفضل مرشحا متسقا منطقيا مع منطق تاريخ المتكلم. أخيرا، يتم توظيف تمثيلات الاتساق أعلاه لإخراج قائمة التصنيفات من ردود المرشحين لتفويض الحوار متعدد الدوران. النتائج التجريبية على مجموعة بيانات الحوار العامة تظهر أن طريقتنا تحصل على درجات أعلى تصنيف من النماذج الأساسية.
تهدف الاستدلال العاطفة في المحادثات متعددة الدورات إلى التنبؤ بمشاعر المشارك في الدور التالي المقبل دون معرفة استجابة المشارك بعد، وهي خطوة ضرورية للتطبيقات مثل تخطيط الحوار. ومع ذلك، فإن التحدي الشديد لإدراك وسبب مشاعر المشاركين في المستقبل، بسبب عد م وجود معلومات عن المستقبل من المستقبل. علاوة على ذلك، فمن الضروري استنتاج المشاعر لالتقاط خصائص الانتشار العاطفي في المحادثات، مثل الثبات والمعاجين. في هذه الدراسة، نركز على التحقيق في مهمة استنتاج المشاعر في محادثات متعددة الدورات من خلال نمذجة انتشار الدول العاطفية بين المشاركين في تاريخ المحادثة، واقتراح وحدة نمط تدرك المرسل إليه تلقائيا ما إذا كان المشارك يحتفظ الحالة العاطفية التاريخية أو تتأثر بالآخرين في المنعطف القادم المقبل. بالإضافة إلى ذلك، نقترح استراتيجية فرقة لتعزيز الأداء النموذجي. تظهر الدراسات التجريبية على ثلاث مجموعات محادثة محادثة مختلفة مختلفة فعالية النموذج المقترح على العديد من خطوط الأساس القوية.
تقدم هذه الورقة StoryDB --- مجموعة بيانات واسعة متعددة اللغات من الروايات.StoryDB هي جثة من النصوص التي تضم قصص في 42 لغة مختلفة.تتضمن كل لغة 500+ قصص.تشمل بعض اللغات أكثر من 20 ألف قصة.يتم فهرسة كل قصة عبر اللغات والمسمى مع العلامات مثل النوع أو الم وضوع.يعرض Corpus تباين موضعي ولغوي غني ويمكن أن يكون بمثابة مورد لدراسة دور السرد في معالجة اللغة الطبيعية في مختلف اللغات بما في ذلك الموارد المنخفضة.نوضح أيضا كيف يمكن استخدام مجموعة البيانات لقياس ثلاث نماذج متعددة اللغات الحديثة، وهي mdistillbert و mbert و xlm-roberta.
حققت المحولات التي تم تدريبها مسبقا على شركة متعددة اللغات، مثل MBERT و XLM-ROBERTA، قدرات نقل متبقية مثيرة للإعجاب. في إعداد نقل الطلقة الصفرية، يتم استخدام بيانات التدريب الإنجليزية فقط، ويتم تقييم النموذج الدقيق على لغة مستهدفة أخرى. على الرغم من أن هذا يعمل بشكل جيد بشكل مدهش، فقد تمت ملاحظة تباين كبير في الأداء اللغوي المستهدف بين مختلف عمليات التشغيل الدقيقة، وفي إعداد الطلقة الصفرية، لا توجد بيانات تطوير اللغة المستهدفة متاحة للتحديد بين نماذج متعددة ذات الضبط. اعتمد العمل المسبق على بيانات Dev الإنجليزية لتحديد بين النماذج التي تم ضبطها بشكل جيد مع معدلات التعلم المختلفة وعدد الخطوات وغيرها من أنواع التشعبات، والتي غالبا ما تؤدي إلى اختيارات فرعية نفسها. في هذه الورقة، نوضح أنه من الممكن تحديد نماذج أفضل باستمرار عند توفر كميات صغيرة من البيانات المشروحة بلغات محورية إضافية. نقترح نهجا للتعلم الآلي للاختيار النموذجي الذي يستخدم التمثيلات الداخلية للأنظمة ذات الطراز الدقيق للتنبؤ بقدراتها المتبادلة. في تجارب شاملة، نجد أن هذه الطريقة تختار باستمرار نماذج أفضل من بيانات التحقق من صحة اللغة الإنجليزية عبر عشرين لغة (بما في ذلك 8 لغات منخفضة الموارد)، وغالبا ما تحقق النتائج التي تتميز باختيار نموذج باستخدام بيانات تطوير اللغة المستهدفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا