يمكن التفكير في رواية القصص، سواء عبر الخرافات أو التقارير الإخبارية أو الأفلام الوثائقية أو المذكرات، باعتبارها اتصال بالأحداث المثيرة للاهتمام والذين يرتبطون معا عملية ملموسة. من المستحسن استخراج سلاسل الحدث التي تمثل هذه العمليات. ومع ذلك، لا تزال هذه الاستخراج مشكلة صعبة. نؤخر أن هذا يرجع إلى طبيعة النصوص التي يتم اكتشاف السلاسل منها. ينبط نص اللغة الطبيعية على سرد من الأحداث الخرسانية والبرية مع معلومات أساسية، والسياق، والرأي، والعناصر الأخرى التي تعتبر مهمة لمجموعة متنوعة من الخطاب الضروري وأعمال البراغماتية ولكنها ليست جزءا من سلسلة الأحداث الرئيسية التي يتم إبلاغها. نقدم طرق لاستخراج هذه السلسلة الرئيسية من نص اللغة الطبيعية، عن طريق تصفية الأحداث غير البارزة والجمل الداعمة. نوضح فعالية أساليبنا بمعزل سلاسل الأحداث الهامة من خلال مقارنة تأثيرها على مهام المصب. نظرا لأنه من خلال نماذج لغة كبيرة مسبقا على سلاسلنا المستخرجة لدينا، نحصل على تحسينات في مهمتين تستفيد من فهم واضح لسلاسل الأحداث: التنبؤ السردي والمسألة الزمنية القائمة على الأحداث الرد. تؤكد التحسينات الواجب والدراسات الودي أن طريقة استخراجنا تعزز سلاسل الأحداث الهامة.
Storytelling, whether via fables, news reports, documentaries, or memoirs, can be thought of as the communication of interesting and related events that, taken together, form a concrete process. It is desirable to extract the event chains that represent such processes. However, this extraction remains a challenging problem. We posit that this is due to the nature of the texts from which chains are discovered. Natural language text interleaves a narrative of concrete, salient events with background information, contextualization, opinion, and other elements that are important for a variety of necessary discourse and pragmatics acts but are not part of the principal chain of events being communicated. We introduce methods for extracting this principal chain from natural language text, by filtering away non-salient events and supportive sentences. We demonstrate the effectiveness of our methods at isolating critical event chains by comparing their effect on downstream tasks. We show that by pre-training large language models on our extracted chains, we obtain improvements in two tasks that benefit from a clear understanding of event chains: narrative prediction and event-based temporal question answering. The demonstrated improvements and ablative studies confirm that our extraction method isolates critical event chains.
المراجع المستخدمة
https://aclanthology.org/