تقترح هذه الورقة دراسة مهمة للكشف عن الجدة من الدلالات الدلالية الرائعة، والتي يمكن توضيحها مع المثال التالي.من الطبيعي أن يمشي شخص كلب في الحديقة، ولكن إذا قال شخص ما إن الرجل يمشي في الدجاج في الحديقة "، فهو رواية.بالنظر إلى مجموعة من الأوصاف اللغوية الطبيعية للمشاهد العادية، نريد تحديد أوصاف المشاهد الرواية.نحن لسنا على علم بأي عمل موجود يحل المشكلة.على الرغم من أن خوارزميات الكشف عن الجدة أو الشذوذ الحالية قابلة للتطبيق، نظرا لأنها عادة ما تكون قائمة على الموضوعات، فإنها تؤدي بشكل سيئ في مهمة الكشف عن الجدة الدلالية الدقيقة.تقترح هذه الورقة نموذجا فعالا (يسمى GAT-MA) لحل المشكلة ويساهم أيضا في مجموعة بيانات جديدة.يوضح التقييم التجريبي أن GAT-MA يتفوق على 11 خطوط رئيسية من الهوامش الكبيرة.
This paper proposes to study a fine-grained semantic novelty detection task, which can be illustrated with the following example. It is normal that a person walks a dog in the park, but if someone says A man is walking a chicken in the park'', it is novel. Given a set of natural language descriptions of normal scenes, we want to identify descriptions of novel scenes. We are not aware of any existing work that solves the problem. Although existing novelty or anomaly detection algorithms are applicable, since they are usually topic-based, they perform poorly on our fine-grained semantic novelty detection task. This paper proposes an effective model (called GAT-MA) to solve the problem and also contributes a new dataset. Experimental evaluation shows that GAT-MA outperforms 11 baselines by large margins.
المراجع المستخدمة
https://aclanthology.org/
يتم إجراء جيل نصي من الرسوم البيانية الدلالية تقليديا مع الطرق الحتمية، والتي تولد وصفا فريدا نظرا رسم بياني للإدخال.ومع ذلك، تعترف مشكلة الجيل مجموعة من النواتج النصية المقبولة، وعرض الاختلاف المعجمي والمنظمات والدلية.لمعالجة هذا الفصل، نقدم مساهمتي
نسأل الموضوعات سواء كانوا ينظرون إلى وجود مجموعة من النصوص، وبعضها مكتوب بالفعل، في حين يتم إنشاء آخرين تلقائيا.نحن نستخدم هذه البيانات لضبط نموذج GPT-2 لدفعه لتوليد المزيد من النصوص التي يشبه الإنسان، ومراقبة أن هذا النموذج الذي تم ضبطه بشكل جيد ينت
الوسائل المضادة هي وسيلة قيمة لفهم القرارات التي اتخذتها أنظمة ML.ومع ذلك، فإن الوسادة المتعرضية الناتجة عن الأساليب المتاحة حاليا لنص اللغة الطبيعية هي غير واقعية أو إدخال تغييرات غير محسوسة.نقترح WilDFactualgan: طريقة تجمع بين GAN الشرطية و AsbeDdi
يشكل جيل النص المخصب المعرفي تحديات فريدة من نوعها في النمذجة والتعلم، مما يدفع البحوث النشطة في العديد من الاتجاهات الأساسية، بدءا من النمذجة المتكاملة للتمثيل العصبي والمعلومات الرمزية في الهياكل التسلسلية / الهرمية / الهرمية، والتعلم دون إشراف مبا
تشير الدراسات الحديثة إلى أن العديد من أنظمة NLP حساسة وعرضة للاضطرابات الصغيرة للمدخلات ولا تعميمها بشكل جيد عبر مجموعات البيانات المختلفة. هذا الافتقار إلى المتانة ينطبق على استخدام أنظمة NLP في تطبيقات العالم الحقيقي. يهدف هذا البرنامج التعليمي إل