نحن نقدم SelfExPlain، وهو نموذج جديد يشرح ذاتيا يفسر تنبؤات تصنيف النص باستخدام المفاهيم القائمة على العبارة.SelfExplain تزويد الأقراص العصبية الموجودة من خلال إضافة (1) طبقة مخصصة عالمية تحدد المفاهيم الأكثر نفوذا في مجموعة التدريب لعينة معينة و (2) طبقة قابلة للتفسير محليا تهدئ مساهمة كل مفهوم إدخال محلي عن طريق الحوسبة درجة الأهميةبالنسبة إلى التسمية المتوقعة.تظهر التجارب عبر خمسة مجموعات بيانات تصنيف نصية أن SelfExPlain يسهل الترجمة الشفوية دون التضحية بالأداء.الأهم من ذلك، تفسيرات من إظهار نفس إظهار الكفاية عن التنبؤات النموذجية وترى أنها كافية وجديرة بالثقة ومفهومة من قبل القضاة البشرية مقارنة مع خطوط الأساس المستخدمة على نطاق واسع.
We introduce SelfExplain, a novel self-explaining model that explains a text classifier's predictions using phrase-based concepts. SelfExplain augments existing neural classifiers by adding (1) a globally interpretable layer that identifies the most influential concepts in the training set for a given sample and (2) a locally interpretable layer that quantifies the contribution of each local input concept by computing a relevance score relative to the predicted label. Experiments across five text-classification datasets show that SelfExplain facilitates interpretability without sacrificing performance. Most importantly, explanations from SelfExplain show sufficiency for model predictions and are perceived as adequate, trustworthy and understandable by human judges compared to existing widely-used baselines.
المراجع المستخدمة
https://aclanthology.org/
نقترح إطارا جديدا لتدريب النماذج لتصنيف مقبولية الردود الناتجة عن نماذج توليد اللغة الطبيعية (NLG)، وتحسين تحويل الجملة الحالية والنهج القائمة على النماذج. يعتبر استجابة NLG مقبولة إذا كانت كل من صحيحة وتجميعها. نحن لا نستخدم أي مراجع بشرية مما يجعل
الشبكات العصبية العميقة عرضة للهجمات الخصومة، حيث اضطراب صغير في المدخل يغير التنبؤ النموذجي.في كثير من الحالات، يمكن أن تخدع المدخلات الخبيثة عن قصد لنموذج واحد نموذج آخر.في هذه الورقة، نقدم الدراسة الأولى للتحقيق بشكل منهجي في تحويل أمثلة الخصومة ب
إن فهم كيفية ترميز الهيكل اللغوي في التضمين السياق يمكن أن يساعد في تفسير أدائه المثير للإعجاب عبر NLP.عادة ما تدعو النهج الحالية لتحقيقها عادة إلى تدريب الطبقات وتستخدم الدقة والمعلومات المتبادلة أو التعقيد كوكيل لخير التمثيل.في هذا العمل، نجادل بأن
غالبا ما يتطلب جيل النص الشرطي القيود المعجمية، أي الكلمات التي يجب أو لا ينبغي إدراجها في نص الإخراج. في حين أن الوصفة المهيمنة لجيل النظام الشرطي كانت نماذج لغوية متماثلة على نطاق واسع يتم تصويرها على بيانات التدريب الخاصة بمهام المهام، فإن مثل هذه
نقترح مهمة مشتركة على اختيار مثيل التدريب لعدد قليل من الجيل العصبي العصبي.أدت نماذج اللغة المحددة مسبقا على نطاق واسع إلى تحسينات مثيرة في جيل نص قليل.ومع ذلك، فإن كل العمل السابق تقريبا يطبق ما عليك سوى أخذ عينات عشوائية لتحديد مثيلات التدريب القلي