ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة الرسوم الجاهزة المستندة إلى المعجم في المعجم

Lexicon-Based Graph Convolutional Network for Chinese Word Segmentation

703   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمكن أن تخفف المعلومات الدقيقة من حدود الكلمات مشكلة الغموض المعجمي لتحسين أداء مهام معالجة اللغة الطبيعية (NLP). وبالتالي، فإن تجزئة الكلمات الصينية (CWS) مهمة أساسية في NLP. نظرا لتطوير نماذج اللغة المدربة مسبقا (PLM)، فإن المعرفة المدربة مسبقا يمكن أن تساعد الأساليب العصبية في حل المشكلات الرئيسية ل CWS في إجراء كبير. حققت الطرق الحالية بالفعل أداء عال في العديد من المعايير (على سبيل المثال، bakeoff-2005). ومع ذلك، فإن الدراسات البارزة الحديثة محدودة من قبل كوربوس المشروح على نطاق صغير. لزيادة تحسين أداء أساليب CWS بناء على ضبط PLMS، نقترح إطار عمل عصبي رواية، LBGCN، الذي يشتمل على شبكة اتصالية قائمة بذاتها في الترميز في ترميز المحولات. النتائج التجريبية على خمسة معايير وأربعة مجموعات بيانات عبر المجال تظهر أن شبكة اتصال الرسوم البيانية المستندة إلى المعجم تستغرق بنجاح معلومات الكلمات المرشحة وتساعد على تحسين الأداء على المعايير (BakeOFF-2005 و CTB6) ومجموعات البيانات عبر المجال (Sighan- 2010). توضح المزيد من التجارب والتحليلات أن إطار عملنا المقترح نماذج المعجم بفعالية لتعزيز قدرة الأطر العصبية الأساسية وتعزز المتانة في سيناريو المجال العابر.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

العديد من الأعمال الحديثة في إظهار كلمة التحليل المعجمي ثنائي اللغة (BLI) Word Adgetdings كمنتجات في الفضاء Euclidean.على هذا النحو، يتم حلها عادة من خلال العثور على تحول خطي يقوم بخرائط Ageddings إلى مساحة مشتركة.بدلا من ذلك، قد تكون مفهومة Word Age ddings كما العقد في رسم بياني مرجح.هذا الإطار يتيح لنا فحص حي الرسم البياني للعقدة دون تولي التحول الخطي، ويستغل التقنيات الجديدة من أدب الأمثل في مطابقة الرسم البياني.لم تتم مقارنة هذه الأساليب المتناقضة في Bli حتى الآن.في هذا العمل، ندرس سلوك الأساليب Euclidean مقابل الأساليب القائمة القائم على الرسم البياني إلى Bli تحت شروط البيانات المختلفة وإظهار أنها تكمل بعضها البعض عند الجمع.نطلق سردنا في https://github.com/kellymarchisio/euc-v-graph-bli.
تهدف مهمة التحقق من الحقائق القائمة على الطاولة إلى التحقق مما إذا كان البيان المحدد مدعوم من الجدول شبه المنظم المحدد. يلعب المنطق الرمزي مع العمليات المنطقية دورا حاسما في هذه المهمة. الأساليب الحالية الاستفادة من البرامج التي تحتوي على معلومات منط قية غنية لتعزيز عملية التحقق. ومع ذلك، نظرا لعدم وجود إشارات خاضعة للإشراف بالكامل في عملية توليد البرنامج، يمكن استخلاص البرامج الزائفة وعملها، مما يؤدي إلى عدم قدرة النموذج على العمليات المنطقية المفيدة. لمعالجة المشكلات المذكورة أعلاه، في هذا العمل، نقوم بصياغة مهمة التحقق من الحقائق القائمة على الطاولة كإطار لاسترجاع الأدلة والتفكير، حيث اقترح شبكة التحقق من الأدلة على مستوى المنطق وشبكة التحقق القائمة على الرسم البياني (LERGV). على وجه التحديد، نقوم أولا باسترجئة الأدلة التي تشبه البرامج على مستوى المنطق من الجدول المعطى والبيان كدليل تكميلي على الطاولة. بعد ذلك، نقوم بإنشاء رسم بياني لمستوى منطقي لالتقاط العلاقات المنطقية بين الكيانات والوظائف في الأدلة المستردة، وتصميم شبكة التحقق القائمة على الرسم البياني لإجراء المنطق المستندة إلى الرسم البياني على مستوى المنطق بناء على الرسم البياني الذي تم إنشاؤه لتصنيف النهائي علاقة استقامة. النتائج التجريبية على Tabract Tabract القياسي على نطاق واسع تظهر فعالية النهج المقترح.
تهدف التعرف على علاقة الخطاب الضمني (IDRR) إلى تحديد العلاقات المنطقية بين جملتين مجاورة في الخطاب.تفشل النماذج الحالية في الاستفادة الكاملة من المعلومات السياقية التي تلعب دورا مهما في تفسير كل جملة محلية.في هذه الورقة، فإننا نقترحنا بالتالي شبكة تت بع السياق في الرسم البياني القائمة على الرسم البياني (شبكة CT) لنموذج سياق الخطاب ل IDRR.تقوم CT-Net أولا بتحويل الخطاب في الرسم البياني لرابطة الفقرة (PAG)، حيث تتبع كل جملة سياقها المرتبطة ارتباطا وثيقا من الخطاب المعقد من خلال أنواع مختلفة من الحواف.بعد ذلك، استخراج CT-NET تمثيل سياقي من PAG من خلال آلية تحديث تم تصميمه خصيصا، مما يمكن أن يدمج بفعالية من كل من دلالات السياق على مستوى الجملة ومستوى الرمز المميز.تشير التجارب على PDTB 2.0 إلى أن شبكة CT-NET أكبر أداء أفضل من النماذج التي نموذجها تقريبا السياق.
يعمل العمل الحديث على تصنيف المعنويات على مستوى جانب الجساب شبكات اتصالا بيانيا (GCN) على أشجار التبعية لتعلم التفاعلات بين شروط الارتفاع وكلمات الرأي. في بعض الحالات، لا يمكن الوصول إلى كلمات الرأي المقابلة لمصطلح الجانب داخل القفزتين على أشجار التب عية، والتي تتطلب المزيد من طبقات GCN إلى النموذج. ومع ذلك، غالبا ما تحقق GCNS أفضل أداء بطبقتين، ولا تحقق GCNs أعمق أي مكسب إضافي. لذلك، نقوم بتصميم نماذج GCN الانتباه الانتقائية الجديدة. من ناحية، يتيح النموذج المقترح التفاعل المباشر بين شروط الجانب وكلمات السياق عن طريق عملية الانتباه الذاتي دون تحديد المسافة على أشجار التبعية. من ناحية أخرى، تم تصميم إجراء اختيار Top-K لتحديد كلمات الرأي عن طريق تحديد كلمات سياق K مع أعلى درجات الاهتمام. نقوم بإجراء تجارب على عدة مجموعات بيانات معيار شائعة الاستخدام وتظهرت النتائج أن SA-GL-GCN المقترح تفوق نماذج أساسية قوية.
تهدف إلى توليد معجم البذور للاستخدام في مهام اللغة الطبيعية المصب والأساليب غير الخاضعة للرقابة لتحريض المعجم الثنائي اللغة قد حصلت على الكثير من الاهتمام في الأدبيات الأكاديمية مؤخرا. في حين أن الإعدادات المثيرة للاهتمام وغير المدمرة بالكامل غير واق عية؛ عادة ما تكون كميات صغيرة من البيانات ثنائية اللغة متاحة عادة بسبب وجود كوربوريل متوازي متعدد اللغات بشكل كبير، يمكن أن يخلق اللغويين كميات صغيرة من البيانات الموازية. في هذا العمل، نوضح نهجا فعالا من Bootstrapping لتعريفات المعجم الثنائية الشرفية شبه الإشراف التي تتمتع بنقاط القوة التكميلية لطريقين متباينين ​​لتحقيق المعجم الثنائي اللغة. في حين أن الطرق الإحصائية فعالة للغاية في حث أزواج الترجمة الصحيحة للكلمات التي تحدث في كثير من الأحيان في كوربوس موازية ومساحات تضمين أحادية مونولينغ لديها ميزة تم تدريبها على كميات كبيرة من البيانات، وبالتالي قد تحفز ترجمات دقيقة للكلمات غائبة عن الكائنات الصغيرة. من خلال الجمع بين هذه القوة النسبية وطريقتنا تحقق نتائج أحدث من الفن في 3 من 4 أزواج لغة في مجموعة اختبار VECMAP الصعبة التي تستخدم الحد الأدنى من الكميات من البيانات الموازية ودون الحاجة إلى قاموس الترجمة. نطلق تنفيذنا على www.blind-review.code.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا