بفضل القدرة التعليمية القوية للتعلم التعلم العميق، خاصة تقنيات ما قبل التدريب مع فقدان نموذج اللغة، حققت تحليل التبعية دفعة كبيرة في الأداء في السيناريو داخل المجال مع بيانات التدريب المسمى الوفيرة للمجالات المستهدفة. ومع ذلك، يتعين على مجتمع التحليل مواجهة الإعداد الأكثر واقعية حيث ينخفض أداء التحليل بشكل كبير عند وجود البيانات المسمى فقط لعدة مجالات خارجية ثابتة. في هذا العمل، نقترح نموذجا جديدا لتحليل التبعية عبر المصدر متعدد الاستخدامات. يتكون النموذج من مكونين، I.E.، شبكة توليد المعلمة لتمييز الميزات الخاصة بالمجال، وشبكة خصومة لتعلم التمثيلات الثابتة للمجال. تظهر التجارب في مجموعة بيانات NLPCC-2019 التي تم إصدارها مؤخرا لمحافلات التبعية متعددة المجال أن طرازنا يمكن أن يحسن باستمرار أداء أداء تحليل المجال عبر النطاق بنقطة حوالي 2 نقطة في دقة المرفقات المسمى (LAS) عبر خطوط خطوط خطوط قوية محسنة من بيرت. يتم إجراء تحليل مفصل للحصول على المزيد من الأفكار حول مساهمات المكونين.
Thanks to the strong representation learning capability of deep learning, especially pre-training techniques with language model loss, dependency parsing has achieved great performance boost in the in-domain scenario with abundant labeled training data for target domains. However, the parsing community has to face the more realistic setting where the parsing performance drops drastically when labeled data only exists for several fixed out-domains. In this work, we propose a novel model for multi-source cross-domain dependency parsing. The model consists of two components, i.e., a parameter generation network for distinguishing domain-specific features, and an adversarial network for learning domain-invariant representations. Experiments on a recently released NLPCC-2019 dataset for multi-domain dependency parsing show that our model can consistently improve cross-domain parsing performance by about 2 points in averaged labeled attachment accuracy (LAS) over strong BERT-enhanced baselines. Detailed analysis is conducted to gain more insights on contributions of the two components.
المراجع المستخدمة
https://aclanthology.org/
يتخلص يدويا على بنك Treebank هو تستغرق وقتا طويلا وكثيفة العمالة. نحن نقوم بإجراء تجارب تحليل التبعية عبر اللغات المتبادلة، حيث نربع المحلل المحلل على لغة واحدة واختبار لغتهم المستهدفة. كحالة الاختبار الخاصة بنا، نستخدم Xibe، لغة تجميل أقل من الموارد
لقد أظهر العمل الحديث أن نماذج اللغة المحظورة غير المؤمنة تعلمت تمثيل مفاهيم تقلص البيانات من تباين اللغة والتي يمكن استخدامها لتحديد بيانات التدريب المستهدف بالمجال. تتوفر تسميات أنواع DataSet في كثير من الأحيان، ومع ذلك لا تزال غير مستكشفة إلى حد ك
نقترح هندسة محول الرسم البياني المتكرر للرسوم البيانية التلقائي (Rngtr) من أجل تحسين الرسوم البيانية التعسفية من خلال التطبيق العسكري لمحول الرسم البياني غير التلقائي إلى الرسم البياني وتطبيقه على تحليل التبعية النحوية.نوضح قوة وفعالية Rngtr على العد
تحليل التبعية عبر المجال غير الخاضع للإكمال هو إنجاز تكيف مجال تحليل التبعية دون استخدام البيانات المسمى في المجال المستهدف. غالبا ما تكون الأساليب الحالية من نوع التوضيح الزائفة، والتي تنشئ البيانات من خلال التوضيح الذاتي للنموذج الأساسي وأداء التدر
على الرغم من تحقيق أداء ملحوظ، عادة ما تستخدم أعمال المعرفة المعززة بالمعرفة عادة قاعدة معرفة متجانسة واحدة متجانسة من تغطية المعرفة المحدودة. وبالتالي، فإنهم غالبا ما ينضون في الأساليب التقليدية لأنه لا يمكن ربط جميع الحوارات بإدخالات المعرفة. تقترح