ترغب بنشر مسار تعليمي؟ اضغط هنا

التعميم في الألعاب القائمة على النص عبر التعلم التسلسل الهرمي

Generalization in Text-based Games via Hierarchical Reinforcement Learning

343   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يوفر التعلم العميق التعلم نهجا واعدا للألعاب القائمة على النصوص في دراسة التواصل الطبيعي باللغة الطبيعية بين البشر والوكلاء الاصطناعي.ومع ذلك، لا يزال التعميم يمثل تحديا كبيرا حيث يعتمد الوكلاء بشكل خطير على تعقيد ومجموعة متنوعة من المهام التدريبية.في هذه الورقة، نتعلم هذه المشكلة عن طريق إدخال إطار هرمي مبني على وكيل RL المعلق الرسم البياني المعلق.في المستوى العالي، يتم تنفيذ سياسة META لتحلل اللعبة بأكملها في مجموعة من المهام الفرعية المحددة بواسطة أهداف نصية، وحدد أحدها بناء على KG.ثم يتم تنفيذ سياسة فرعية في المستوى المنخفض لإجراء تعلم التعزيز المكيف للأهداف.نقوم بإجراء تجارب على الألعاب ذات مستويات صعوبة مختلفة وإظهار أن الطريقة المقترحة تتمتع بالتعميمات المواتية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يمكن استخدام الألعاب القائمة على النصوص لتطوير وكلاء نص موجه نحو المهام لإنجاز المهام ذات التعليمات اللغوية رفيعة المستوى، والتي لها تطبيقات محتملة في المجالات مثل تفاعل الإنسان الروبوت. بالنظر إلى تعليمات نصية، يستخدم تعلم التعزيز عادة لتدريب الوكلا ء لإكمال المهمة المقصودة بسبب راحتها في سياسات التعلم تلقائيا. ومع ذلك، بسبب مساحة كبيرة من الإجراءات النصية للكبار، تعلم شبكة السياسة التي تنشئ كلمة عمل من Word مع تعلم التعزيز أمر صعب. تظهر أعمال البحث الحديثة أن التعلم التقليد يوفر طريقة فعالة لتدريب شبكة السياسة القائمة على الجيل. ومع ذلك، فإن الوكلاء المدربين مع التعلم المقلم يصعب إتقان مجموعة واسعة من أنواع المهام أو المهارات، ومن الصعب عليهم التعميم أيضا مع البيئات الجديدة. في هذه الورقة، نقترح طريقة تعزز التعزيز التيلة لتدريب وكلاء النص من خلال التعلم إلى الاستكشاف. على وجه الخصوص، يستكشف وكيل النص أولا البيئة لجمع المعلومات الخاصة بالفصل، ثم تتكيف مع سياسة التنفيذ لحل المهمة مع هذه المعلومات. على ALFWorld المتاحة للجمهور، أجرينا دراسة مقارنة مع التعلم التقليد وإظهار تفوق طريقنا.
يحتوي نموذج HIAGM النموذجي الحالي على تصنيف النص التسلسل الهرمي وجود قيودان. أولا، يربط كل نموذج نصي مع جميع الملصقات في DataSet التي تحتوي على معلومات غير ذات صلة. ثانيا، لا ينظر في أي عائق إحصائي على تمثيلات التسمية المستفادة من تشفير الهيكل، في حي ن ثبت أن القيود المفروضة على تعلم التمثيل أنها مفيدة في العمل السابق. في هذه الورقة، نقترح HTCINFOMAX لمعالجة هذه المشكلات عن طريق إدخال تعظيم المعلومات التي تتضمن وحدتي: تعظيم المعلومات المتبادلة النصية وتسمية التسمية مطابقة مسبقة. الوحدة النمطية الأولى يمكن أن تصمم التفاعل بين كل نموذج نصية وتسميات الحقيقة الأرضية صراحة التي تتصفح المعلومات غير ذات الصلة. والثاني يشجع تشفير الهيكل على تعلم تمثيلات أفضل مع الخصائص المرجوة لجميع الملصقات التي يمكن أن تتعامل بشكل أفضل مع عدم توازن العلامة في تصنيف النص الهرمي. النتائج التجريبية على اثنين من مجموعات البيانات القياسية توضح فعالية HTCINFOMAX المقترحة.
تصنيف النص القصير هو مهمة أساسية في معالجة اللغة الطبيعية.من الصعب بسبب عدم وجود معلومات السياق والبيانات المسمى في الممارسة العملية.في هذه الورقة، نقترح طريقة جديدة تسمى SHINE، والتي تعتمد على الشبكة العصبية الرسم البيانية (GNN)، لتصنيف النص القصير. أولا، نقوم بنمذت مجموعة بيانات النص القصيرة كشركة بيانية غير متجانسة هرمية تتكون من رسومات مكونة على مستوى Word والتي تقدم معلومات أكثر دلالة ونقصية.بعد ذلك، نتعلم ديناميكيا رسم بياني مستند قصير يسهل نشر الملصقات الفعالة بين النصوص القصيرة المشابهات.وبالتالي، فإن المقارنة مع الأساليب القائمة على GNN القائمة، والتألق يمكن أن يستغل أفضل التفاعلات بين العقد من نفس الأنواع والقبض على أوجه التشابه بين النصوص القصيرة.تظهر تجارب واسعة النطاق على مختلف مجموعات البيانات القصيرة القصيرة المعجمية أن التألق يتفوق باستمرار على الأساليب الحديثة، خاصة مع عدد أقل من الملصقات.
على الرغم من تطبيق نماذج التسلسل العصبي للتسلسل بنجاح على التحليل الدلالي، إلا أنها تفشل في التعميم التركيبي، أي أنها غير قادرة على التعميم بشكل منهجي لتركيبات غير مرئية من مكونات المشاهدة. بدافع من التحليل الدلالي التقليدي حيث يتم احتساب التركيز بشك ل صريح من قبل النحو الرمزي، نقترح إطار فك التشفير الجديد الذي يحافظ على التعبير عن النماذج والعمومية من نماذج التسلسل إلى التسلسل مع تضم محاذاة على غرار المعجم ومعالجة المعلومات المنفذة. على وجه التحديد، نقوم بتحلل فك التشفير في مرحلتين حيث يتم وضع علامة على حامل الإدخال أولا مع رموز الدلالية التي تمثل معنى الكلمات الفردية، ثم يتم استخدام نموذج تسلسل إلى تسلسل للتنبؤ بتصميم تمثيل المعنى النهائي على الكلام والعلامة المتوقعة تسلسل. النتائج التجريبية على ثلاث مجموعات بيانات تحليل الدلالات توضح أن النهج المقترح يحسن باستمرار التعميم التركيبي عبر الهندسة النموذجية والنطاقات والإضفاءات الدلالية.
نحن نعتبر التمثيل الهرمي للوثائق كرسوم بيانية واستخدام التعلم العميق الهندسي لتصنيفها إلى فئات مختلفة.في حين أن الشبكات العصبية الرسم البيانية يمكن أن تتعامل مع الهيكل المتغير بشكل فعال للمستندات التسلسل الهرمية باستخدام عمليات تمرير رسالة ثابتة للصب غ، فإننا نوضح أنه يمكننا الحصول على تحسينات إضافية على الأداء باستخدام عملية تجمع الرسوم البيانية الانتقائية المقترحة التي تنشأ من حقيقة أن بعض أجزاء التسلسل الهرمي ثابتةعبر وثائق مختلفة.طبقنا نموذجنا لتصنيف بروتوكولات التجريبية السريري (CT) إلى فئات كاملة وإنهاءها.نستخدم حقيبة من الكلمات القائمة على الأكياس، بالإضافة إلى تضيير مقرها المحولات مسبقا لفصل العقد الرسم البياني، وتحقيق F1 Squareesaround 0.85 على سجل CT واسع النطاق للجمهور حول بروتوكولات 360k.نوضح كذلك كيف يمكن للتجمع الانتقائي إضافة رؤى في التنبؤ بحالة إنهاء CT.نحن نجعل التعليمات البرمجية المصدرية والشقاقات DataSet يمكن الوصول إليها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا