ترغب بنشر مسار تعليمي؟ اضغط هنا

HTCINFOMAX: نموذج عالمي لتصنيف النص التسلسل الهرمي عبر تعظيم المعلومات

HTCInfoMax: A Global Model for Hierarchical Text Classification via Information Maximization

317   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يحتوي نموذج HIAGM النموذجي الحالي على تصنيف النص التسلسل الهرمي وجود قيودان. أولا، يربط كل نموذج نصي مع جميع الملصقات في DataSet التي تحتوي على معلومات غير ذات صلة. ثانيا، لا ينظر في أي عائق إحصائي على تمثيلات التسمية المستفادة من تشفير الهيكل، في حين ثبت أن القيود المفروضة على تعلم التمثيل أنها مفيدة في العمل السابق. في هذه الورقة، نقترح HTCINFOMAX لمعالجة هذه المشكلات عن طريق إدخال تعظيم المعلومات التي تتضمن وحدتي: تعظيم المعلومات المتبادلة النصية وتسمية التسمية مطابقة مسبقة. الوحدة النمطية الأولى يمكن أن تصمم التفاعل بين كل نموذج نصية وتسميات الحقيقة الأرضية صراحة التي تتصفح المعلومات غير ذات الصلة. والثاني يشجع تشفير الهيكل على تعلم تمثيلات أفضل مع الخصائص المرجوة لجميع الملصقات التي يمكن أن تتعامل بشكل أفضل مع عدم توازن العلامة في تصنيف النص الهرمي. النتائج التجريبية على اثنين من مجموعات البيانات القياسية توضح فعالية HTCINFOMAX المقترحة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يوفر التعلم العميق التعلم نهجا واعدا للألعاب القائمة على النصوص في دراسة التواصل الطبيعي باللغة الطبيعية بين البشر والوكلاء الاصطناعي.ومع ذلك، لا يزال التعميم يمثل تحديا كبيرا حيث يعتمد الوكلاء بشكل خطير على تعقيد ومجموعة متنوعة من المهام التدريبية.ف ي هذه الورقة، نتعلم هذه المشكلة عن طريق إدخال إطار هرمي مبني على وكيل RL المعلق الرسم البياني المعلق.في المستوى العالي، يتم تنفيذ سياسة META لتحلل اللعبة بأكملها في مجموعة من المهام الفرعية المحددة بواسطة أهداف نصية، وحدد أحدها بناء على KG.ثم يتم تنفيذ سياسة فرعية في المستوى المنخفض لإجراء تعلم التعزيز المكيف للأهداف.نقوم بإجراء تجارب على الألعاب ذات مستويات صعوبة مختلفة وإظهار أن الطريقة المقترحة تتمتع بالتعميمات المواتية.
تصنيف النص القصير هو مهمة أساسية في معالجة اللغة الطبيعية.من الصعب بسبب عدم وجود معلومات السياق والبيانات المسمى في الممارسة العملية.في هذه الورقة، نقترح طريقة جديدة تسمى SHINE، والتي تعتمد على الشبكة العصبية الرسم البيانية (GNN)، لتصنيف النص القصير. أولا، نقوم بنمذت مجموعة بيانات النص القصيرة كشركة بيانية غير متجانسة هرمية تتكون من رسومات مكونة على مستوى Word والتي تقدم معلومات أكثر دلالة ونقصية.بعد ذلك، نتعلم ديناميكيا رسم بياني مستند قصير يسهل نشر الملصقات الفعالة بين النصوص القصيرة المشابهات.وبالتالي، فإن المقارنة مع الأساليب القائمة على GNN القائمة، والتألق يمكن أن يستغل أفضل التفاعلات بين العقد من نفس الأنواع والقبض على أوجه التشابه بين النصوص القصيرة.تظهر تجارب واسعة النطاق على مختلف مجموعات البيانات القصيرة القصيرة المعجمية أن التألق يتفوق باستمرار على الأساليب الحديثة، خاصة مع عدد أقل من الملصقات.
يمكن للتمثيلات السياقية المستفادة من طرازات اللغة غالبا ما ترميز سمات غير مرغوب فيها، مثل الجمعيات الديموغرافية للمستخدمين، أثناء التدريب على المهمة المستهدفة غير المرتبطة.نحن نهدف إلى فرك هذه السمات غير المرغوب فيها وتعلم التمثيلات العادلة مع الحفاظ على الأداء في المهمة المستهدفة.في هذه الورقة، نقدم إطارية تعليمية مخدمية، (ADS)، لتمثيلات ديبيا السياقية.نقوم بإجراء التحليل النظري لإظهار أن إطار العمل لدينا يتقوم دون تسريب المعلومات الديموغرافية في ظل ظروف معينة.نقوم بتوسيع تقنيات التقييم السابقة من خلال تقييم أداء DeviAsing باستخدام الحد الأدنى من التحقيق في الوصف (MDL).تظهر التقييمات التجريبية على 8 مجموعات البيانات أن الإعلانات تنشئ تمثيلات مع الحد الأدنى من المعلومات حول السمات الديموغرافية أثناء كونها بالتفكيك في الحد الأقصى حول المهمة المستهدفة.
أصبح التعلم المستمر أمرا مهما بشكل متزايد لأنه تمكن نماذج NLP للتعلم باستمرار واكتساب المعرفة بمرور الوقت. يتم تصميم أساليب التعلم المستمرة السابقة بشكل أساسي للحفاظ على المعرفة من المهام السابقة، دون التركيز كثيرا على كيفية تعميم النماذج بشكل جيد لم هام جديدة. في هذا العمل، نقترح طريقة التنظيم القائم على معلومات المعلومات للتعلم المستمر حول تصنيف النص. أسلوبنا المقترح أولا DESENTANGLES نص مساحات مخفية في تمثيلات عامة لجميع المهام والتمثيلات الخاصة بكل مهمة فردية، ومزيد من تنظيم هذه التمثيلات بشكل مختلف بشكل أفضل تقييد المعرفة المطلوبة للتعميم. نحن نقدم أيضا مهام مساعدة بسيطة: التنبؤ بالجمل التالي وتنبؤ المهام معرف المهام، لتعلم مساحات تمثيلية عامة ومحددة أفضل. توضح التجارب التي أجريت على معايير واسعة النطاق فعالية طريقتنا في مهام تصنيف النص المستمر مع تسلسلات مختلفة وأطوال فوق خطوط الأساس الحديثة. لقد أصدرنا علنا ​​رمزنا في https://github.com/gt-salt/idbr.
أصبحت تسليلات التسلسل الهرمي لاستغلال التسمية نهجا واعدا لمعالجة مشكلة تصنيف النص متعدد الملصقات الصفرية (ZS-MTC). تهدف الأساليب التقليدية إلى تعلم نموذج مطابق بين النص والملصقات، باستخدام تشفير رسم بياني لإدراج التسلسلات الهرمية التسمية للحصول على ت مثيلات تسمية فعالة (Rios and Kavuluru، 2018). في الآونة الأخيرة، تم استخدام نماذج مسبقا مثل Bert (Devlin et al.، 2018) لتحويل مهام التصنيف إلى مهمة استقامة نصية (يين وآخرون، 2019). هذا النهج مناسب بشكل طبيعي لمهمة ZS-MTC. ومع ذلك، فإن النماذج المحددة المسبقة هي غير مقصودة في العمل الحالي لأنها لا تولد تمثيلات ناقلات فردية للنصوص أو الملصقات، مما يجعلها بلا معنى الجمع بين أساليب ترميز الرسم البياني التقليدي. في هذه الورقة، نستكشف لتحسين النماذج المحددة مع التسلسلات الهرمية التسمية في مهمة ZS-MTC. نقترح نهج تسلسل التسلسل الهرمي العلوي (RLHR) لتشجيع الترابط بين الملصقات في التسلسلات الهرمية أثناء التدريب. وفي الوقت نفسه، للتغلب على ضعف التوقعات المسطحة، نقوم بتصميم خوارزمية Rollback التي يمكنها إزالة الأخطاء المنطقية من التنبؤات أثناء الاستدلال. تظهر النتائج التجريبية على ثلاث مجموعات بيانات حقيقية على أن نهجنا يحقق أداء أفضل وتتفوق على الأساليب السابقة غير مسبوقة في مهمة ZS-MTC.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا