ترغب بنشر مسار تعليمي؟ اضغط هنا

تعلم رموز فك التراجع الصعب الانتباه للمحولات

Learning Hard Retrieval Decoder Attention for Transformers

238   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يعتمد نموذج الترجمة المحول على آلية الاهتمام المتعدد الرأس، والتي يمكن توازتها بسهولة.تقوم شبكة الاهتمام المتعددة بالاهتمام بأداء وظيفة اهتمام المنتج DOT-Product المعزز بالتوازي، مما تمكن من تمكين النموذج من خلال حضور المعلومات المشتركة إلى معلومات من مختلف الفئات الفرعية التمثيلية في مواقف مختلفة.في هذه الورقة، نقدم نهجا لتعلم اهتمام استرجاع صعب حيث يحضر رأس الاهتمام فقط إلى رمز واحد في الجملة بدلا من جميع الرموز.وبالتالي، يمكن استبدال مضاعفة المصفوفة بين احتمالات الاهتمام وتسلسل القيمة في إيلاء اهتمام منتجات DOT-Product القياسية القياسية بعملية استرجاع بسيطة وفعالة.نظظ أن آلية اهتمام استرجاعها الثابت لدينا هي 1.43 مرة أسرع في فك التشفير، مع الحفاظ على جودة الترجمة على مجموعة واسعة من مهام الترجمة الآلية عند استخدامها في شبكات فك تشفير الذات والانتباه.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

اجتذبت التعلم الذاتي الإشراف مؤخرا اهتماما كبيرا في مجتمع NLP لقدرته على تعلم الميزات التمييزية باستخدام هدف بسيط.تحقق هذه الورقة التي تحقق ما إذا كان التعلم مناقصة يمكن تمديده لإيلاء اهتمام Transfomer لمعالجة تحدي مخطط Winograd.تحقيقا لهذه الغاية، ن قترح إطارا جديدا للإشراف على الذات، حيث يستحق خسارة صغيرة مباشرة على مستوى اهتمام الذات.يوضح التحليل التجريبي للنماذج التي تعتمد انتباهنا على مجموعات بيانات متعددة إمكانيات التفكير في المنطقية.يتفوق النهج المقترح على جميع النهج القابلة للمقارنة غير الخاضعة للرقابة مع تجاوز الأشرار في بعض الأحيان.
منذ أن تم اعتماد النماذج العصبية في توليد لغة البيانات إلى النص، فقد تم اعتمادها دائما على المكونات الخارجية لتحسين دقتها الدلالية، لأن النماذج عادة لا تظهر القدرة على توليد نص يذكر بشكل موثوق كل المعلومات المقدمة فيالمدخل.في هذه الورقة، نقترح طريقة فك التشفير الجديدة التي تستخرج معلومات تفسيرها من نماذج ترميز تشفير التشفير، وتستخدمها لاستنتاج السمات التي يتم ذكرها في النص الذي تم إنشاؤه، والذي يستخدم لاحقا لإنقاش فرضيات شعاع.باستخدام طريقة فك التشفير هذه مع T5 و Bart، نعرض على ثلاثة مجموعات بيانات قدرتها على تقليل الأخطاء الدلالية بشكل كبير في المخرجات التي تم إنشاؤها، مع الحفاظ على جودة حديثة من بين الفن.
في هذا العمل، نقوم بإجراء تحقيق شامل على إحدى المركزيات من أنظمة الترجمة الآلية الحديثة: آلية اهتمام مفوض الترم التشفير.بدافع من مفهوم محاذاة الدرجة الأولى، فإننا نقدم آلية الاهتمام (الصليب) من خلال اتصال متكرر، مما يسمح بالوصول المباشر إلى قرارات ال انتباه / المحاذاة السابقة.نقترح عدة طرق لتضمين مثل هذا التكرار في آلية الاهتمام.التحقق من أدائها عبر مهام ترجمة مختلفة نستنتج أن هذه الملحقات والتبعية ليست مفيدة لأداء الترجمة من بنية المحولات.
تهدف توليد السؤال الطبيعي (QG) إلى توليد أسئلة من مقطع، ويتم الرد على الأسئلة التي تم إنشاؤها من المقطع.معظم النماذج مع نموذج الأداء الحديث النص الذي تم إنشاؤه سابقا في كل خطوة فك التشفير.ومع ذلك، (1) يتجاهلون معلومات الهيكل الغني المخفية في النص الذ ي تم إنشاؤه سابقا.(2) يتجاهلون تأثير الكلمات المنسوخة على مرور.ندرك أن المعلومات في الكلمات التي تم إنشاؤها مسبقا بمثابة معلومات مساعدة في الجيل اللاحق.لمعالجة هذه المشكلات، نقوم بتصميم وحدة فك الترميز المستندة إلى شبكة الرسم البياني للتكرار (IGND) لنموذج الجيل السابق باستخدام شبكة عصبية رسم بيانية في كل خطوة فك التشفير.علاوة على ذلك، يلتقط نموذج الرسم البياني لدينا علاقات التبعية في المقطع الذي يعزز الجيل.توضح النتائج التجريبية أن نموذجنا يتفوق على النماذج الحديثة مع مهام QG على مستوى الجملة على مجموعات بيانات الفريق وماركو.
نماذج المحولات هي التقليب equivariant.لتزويد الطلب واكتب معلومات الرموز المميزة والإدخال، عادة ما تتم إضافتها إلى المدخلات.تعمل الأعمال الأخيرة الاختلافات المقترحة من الترميزات الموضعية مع ترميزات الموضع النسبي تحقيق أداء أفضل.يوضح تحليلنا أن المكسب يأتي في الواقع من نقل المعلومات الموضعية إلى طبقة الاهتمام من المدخلات.بدافع من ذلك، نقدم اهتماما ممتما مطردا للمحولات (النظام الغذائي)، وهي آلية بسيطة ولكنها فعالة لتشفير معلومات الموقف والقطاع في نماذج المحولات.تتمتع الطريقة المقترحة بتدريب ووقت الاستدلال بشكل أسرع، مع تحقيق أداء تنافسي في معايير الغراء وإكستريم و WMT.نحن نعتبر أكثر تعميم طريقتنا للمحولات الطويلة المدى وإظهار مكاسب الأداء.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا