في هذا العمل، نقوم بإجراء تحقيق شامل على إحدى المركزيات من أنظمة الترجمة الآلية الحديثة: آلية اهتمام مفوض الترم التشفير.بدافع من مفهوم محاذاة الدرجة الأولى، فإننا نقدم آلية الاهتمام (الصليب) من خلال اتصال متكرر، مما يسمح بالوصول المباشر إلى قرارات الانتباه / المحاذاة السابقة.نقترح عدة طرق لتضمين مثل هذا التكرار في آلية الاهتمام.التحقق من أدائها عبر مهام ترجمة مختلفة نستنتج أن هذه الملحقات والتبعية ليست مفيدة لأداء الترجمة من بنية المحولات.
In this work, we conduct a comprehensive investigation on one of the centerpieces of modern machine translation systems: the encoder-decoder attention mechanism. Motivated by the concept of first-order alignments, we extend the (cross-)attention mechanism by a recurrent connection, allowing direct access to previous attention/alignment decisions. We propose several ways to include such a recurrency into the attention mechanism. Verifying their performance across different translation tasks we conclude that these extensions and dependencies are not beneficial for the translation performance of the Transformer architecture.
المراجع المستخدمة
https://aclanthology.org/
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل
تعد العديد من المهام التسلسلية للتسلسل في معالجة اللغات الطبيعية رتيبة تقريبا في المحاذاة بين المصدر وتسلسل المستهدف، وقد سهل العمل السابق أو إنفاذ سلوك الانتباه الرعبي عبر وظائف الاهتمام المتخصص أو المحاكمة.في هذا العمل، نقدم وظيفة خسارة رتابة متواف
معرفة الجراثيم المسببة لالتهاب السحايا في حالات كسور قاعدة الجمجمة و حساسية هذه الجراثيم للصادات و كذلك فائدة لقاح المكورات الرئوية 23 Pneumo في الوقاية من التهاب السحايا في هذه الحالات.
اجتذبت التعلم الذاتي الإشراف مؤخرا اهتماما كبيرا في مجتمع NLP لقدرته على تعلم الميزات التمييزية باستخدام هدف بسيط.تحقق هذه الورقة التي تحقق ما إذا كان التعلم مناقصة يمكن تمديده لإيلاء اهتمام Transfomer لمعالجة تحدي مخطط Winograd.تحقيقا لهذه الغاية، ن
يعتمد نموذج الترجمة المحول على آلية الاهتمام المتعدد الرأس، والتي يمكن توازتها بسهولة.تقوم شبكة الاهتمام المتعددة بالاهتمام بأداء وظيفة اهتمام المنتج DOT-Product المعزز بالتوازي، مما تمكن من تمكين النموذج من خلال حضور المعلومات المشتركة إلى معلومات م