ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين إدارة الرسم البياني المعرفي باستخدام تحويلات آفينية للكيانات المقابلة لكل علاقة

Improving Knowledge Graph Embedding Using Affine Transformations of Entities Corresponding to Each Relation

400   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

للعثور على تضمين مناسب لرجل المعرفة يظل تحديا كبيرا في الوقت الحاضر. باستخدام أساليب شرطة المعرفة السابقة، عادة ما يتم تمثيل كل كيان في رسم بياني المعرفة كجاغر K- الأبعاد. كما نعلم، يمكن التعبير عن تحول أفيني في شكل مضاعفة مصفوفة تليها ناقلات الترجمة. في هذه الورقة، نستفيد أولا مجموعة من التحولات الفوضى المتعلقة بكل علاقة بتشغيل على ناقلات الكيان، ثم يتم استخدام هذه المتجهات المحولة لأداء التضمين مع الأساليب السابقة. تتمثل الميزة الرئيسية لاستخدام تحويلات Affine خصائص هندسة جيدة مع إمكانية الترجمة الشفوية. توضح نتائجنا التجريبية أن التصميم الفديهي المقترح مع تحويلات تفكيك يوفر زيادة ذات دلالة إحصائية في الأداء مع إضافة بعض خطوات معالجة إضافية أو إضافة عدد محدود من المتغيرات الإضافية. اتخاذ Transe كمثال، فإننا نوظف تحويل المقياس (الحالة الخاصة لتحويل أفيركي)، ويعرض فقط متغيرات إضافية لكل علاقة. من المستغرب، فإنه ينطبق على التدوير إلى حد ما على مجموعات البيانات المختلفة. نحن نقدم أيضا تحويلات تفكيكية إلى التدوير والضيق والمعقدة، على التوالي، وكل واحد يتفوق على طريقته الأصلية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعكس العلاقات في معظم الرسوم البيانية المعارف التقليدية (KGS) فقط الاتصالات الثابتة والواقعية، ولكنها تفشل في تمثيل الأنشطة الديناميكية وتغير الدولة حول الكيانات. في هذه الورقة، نؤكد على أهمية دمج الأحداث في تعلم تمثيل KG، واقتراح نموذج Eventke Event ke Eventke المحسن للحدث. على وجه التحديد، نظرا لل KG الأصلية، فإننا ندمج أول عقود حدث من خلال بناء شبكة غير متجانسة، حيث يتم توزيع العقد الكيانية وعقد الحدث على جانبي الشبكة بين روابط الوسيطة في الحدث. ثم نستخدم علاقات كيان الكيان من الروابط الزمنية KG والأحداث الزمنية الأصلية إلى الكيان والكيان الداخلي والوقت على التوالي. نقوم بتصميم طريقة تمرير رسائل مفيدة وتستند إلى الرواية، والتي يتم إجراؤها على كيان كيان وكيان الحدث وحدث الأحداث لفيد معلومات الحدث في AGBeddings KG. تظهر النتائج التجريبية على مجموعات البيانات في العالم الحقيقي أن الأحداث يمكن أن تحسن إلى حد كبير جودة AGEDDINGS KG على مهام متعددة المصب.
تلعب الحساب دورا رئيسيا في فهم اللغة الطبيعية.ومع ذلك، فإن نهج NLP الحالية، وليس فقط نهج Word2VEC التقليدي أو نماذج اللغة المستندة إلى المحولات السياقية، تفشل في تعلم الحساب.ونتيجة لذلك، فإن أداء هذه النماذج محدود عند تطبيقه على التطبيقات المكثفة في المجالات السريرية والمالية.في هذا العمل، نقترح نهج تضمين عدد بسيط بناء على الرسم البياني للمعرفة.نحن نبني رسم بياني للمعرفة يتكون من كيانات الأرقام وعلاقات الحجم.يتم بعد ذلك تطبيق طريقة تضمين الرسم البياني للمعرفة للحصول على ناقلات الرقم.نهجنا سهل التنفيذ، وتجربة نتائج التجربة على مختلف مهام NLP ذات الصلة بالكمال إظهار فعالية وكفاءة طريقتنا.
معظم أساليب الإجابة على الأسئلة القائمة على المعرفة الحالية (KBQA) تعلم أولا تعيين السؤال المحدد في رسم بياني للاستعلام، ثم قم بتحويل الرسم البياني إلى استعلام قابل للتنفيذ للعثور على الإجابة.عادة ما يتم توسيع الرسم البياني للاستعلام تدريجيا من كيان الموضوع بناء على نموذج تنبؤ التسلسل.في هذه الورقة، نقترح حل جديد للاستعلام عن جيل الرسم البياني الذي يعمل بالطريقة المعاكسة: نبدأ مع قاعدة المعرفة بأكملها وتقليصها تدريجيا إلى الرسم البياني للاستعلام المرغوب فيه.يعمل هذا النهج على تحسين كفاءة ودقة جيل الرسم البياني للاستعلام، خاصة بالنسبة لأسئلة قفز متعددة المعقدة.تظهر النتائج التجريبية أن طريقتنا تحقق أداء حديثة على مجموعة بيانات ComplexwebQuestion (CWQ).
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي ة فقط بلغة موارد عالية، بينما تحتاج إلى الإجابة على أسئلة متعددة اللغات دون أي بيانات معدنية باللغات المستهدفة. يتم تشغيل نهج مباشر إلى نماذج متعددة اللغات المدربة مسبقا (على سبيل المثال، MBERT) للنقل عبر اللغات، ولكن هناك فجوة كبيرة من الأداء KGQA بين المصدر واللغات المستهدفة. في هذه الورقة، نستمسى تحريض معجم ثنائي اللغة دون مقابل (BLI) لخريطة الأسئلة التدريبية في لغة المصدر في تلك الموجودة في اللغة المستهدفة مثل بيانات التدريب المعزز، والتي تتحل إلى عدم تناسق اللغة بين التدريب والاستدلال. علاوة على ذلك، نقترح استراتيجية تعليمية عدائية لتخفيف اضطراب بناء الجملة في البيانات المعززة، مما يجعل النموذج يميل إلى كل من اللغة والبنيات الاستقلال. وبالتالي، فإن نموذجنا يضيق الفجوة في تحويل صفرية عبر اللغات. التجارب على مجموعة بيانات KGQA متعددة اللغات مع 11 لغة موارد صفرية تحقق من فعاليتها.
يفترض إكمال الرسم البياني المعرفي التقليدي (KGC) أن جميع كيانات الاختبار تظهر أثناء التدريب.ومع ذلك، في سيناريوهات العالم الحقيقي، تتطور الرسوم البيانية المعارف (KG) بسرعة مع كيانات بياني خارج المعرفة (OOKG) المضافة بشكل متكرر، ونحن بحاجة إلى تمثيل ه ذه الكيانات بكفاءة.لا يمكن أن تمثل أساليب شرط Graph INFORM INGEDDING (KGE) الموجودة في الرسم البياني الحالي من كيانات OOKG دون إعادة التدريب المكلفة على كلغ كله.لتعزيز الكفاءة، نقترح طريقة بسيطة وفعالة تمثلها كيانات OOKG من خلال تقديرها الأمثل بموجب الافتراضات الترجمة.علاوة على ذلك، نظرا لأن المدينات المحددة مسبقا للكيانات الموجودة في المعرفة (IKG)، فإن طريقتنا لا تحتاج إلى تعلم إضافي.تظهر النتائج التجريبية على مهام KGC مع كيانات OOKG أن أسلوبنا تتفوق على الأساليب السابقة بتهامش كبير مع كفاءة أعلى.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا