تصف هذه الورقة التقديم من قبل Nuig-DSI إلى Benchmark GEM 2021. نشارك في المهمة المشتركة النمذجة حيث نقدم مخرجات على أربع مجموعات بيانات للجيل إلى النص، وهي DART، WEBNLG (EN)، E2E و COMMINGEN.نتبع النهج الذي يشبه الواحدة الموصوفة في الورق القياسي GEM حيث نستخدم النموذج T5-Base المدرب مسبقا لتقديمنا.نحن ندرب هذا النموذج على بيانات أحادية الذهاب إضافية حيث نقوم بتجربة استراتيجيات اخفاء مختلفة تركز على وجه التحديد على كيانات إخفاء، وتندب المفاهيم وكذلك استراتيجية إخفاء عشوائية للتدريب المسبق.في نتائجنا، نجد أن الاخفاء العشوائي يؤدي الأفضل من حيث مقاييس التقييم التلقائي، على الرغم من أن النتائج ليست مختلفة بشكل كبير مقارنة باستراتيجيات اخفاء أخرى.
This paper describes the submission by NUIG-DSI to the GEM benchmark 2021. We participate in the modeling shared task where we submit outputs on four datasets for data-to-text generation, namely, DART, WebNLG (en), E2E and CommonGen. We follow an approach similar to the one described in the GEM benchmark paper where we use the pre-trained T5-base model for our submission. We train this model on additional monolingual data where we experiment with different masking strategies specifically focused on masking entities, predicates and concepts as well as a random masking strategy for pre-training. In our results we find that random masking performs the best in terms of automatic evaluation metrics, though the results are not statistically significantly different compared to other masking strategies.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة Simplener، وهو نموذج تم تطويره لمهمة تبسيط الجملة في GEM-2021.نظامنا عبارة عن بنية محولات SEQ2SEQ أحادية مونولجة تستخدم الرموز المراقبة معلقة مسبقا إلى البيانات، مما يسمح للنموذج بتشكيل التبسيط الذي تم إنشاؤه وفقا للسمات التي تريدها ال
نقدم المساهمة المشتركة في IST و Grongel بمهمة WMT 2021 المشتركة بشأن تقدير الجودة.شارك فريقنا في مهمتين: التقييم المباشر وجهد التحرير بعد، يشمل ما مجموعه 35 تقريرا.بالنسبة لجميع التقديمات، ركزت جهودنا على تدريب النماذج متعددة اللغات على رأس الهندسة ا
تقدم هذه الورقة التقديمات الكلية الإمبراطورية لندن إلى المهمة المشتركة لتقدير الجودة WMT21 (QE) 3: اكتشاف الخطأ الحرج.ينشئ نهجنا على تمثيلات متدرب مسبقا عبر اللغات في نموذج تصنيف التسلسل.ونحن كذلك تحسين المصنف الأساسي من خلال (ط) إضافة عينات مرجحة لل
في هذه الورقة، نقدم مساهمة مشتركة من المهمة المشتركة ومقاييس WMT 2021.مع تركيز هذا العام على متري الجودة متعددة الأبعاد (MQM) باعتباره التقييم البشري الحقيقة الأرضية، كان هدفنا هو توجيه المذنب نحو الارتباطات الأعلى مع MQM.نحن نقوم بذلك عن طريق التدري
في هذه الورقة، نقوم بصف أن نقوم بتقديم طلباتنا إلى WAT-2021 (Nakazawa et al.، 2021) لمهمة اللغة الإنجليزية إلى ميانمار (بورمي).فريقنا، ID: YCC-MT1 ''، ركز على جلب معرفة حرفية إلى وحدة فك الترميز دون تغيير النموذج.لقد استخرجنا يدويا أزواج الكلمة / عبا