Backtranslation هي تقنية شائعة للاستفادة من البيانات غير المسبقة في سيناريوهات الموارد المنخفضة في الترجمة الآلية.تنطبق الطريقة بشكل مباشر على توليد الانفعال المورفولوجي إذا كانت نماذج الكلمة غير المسبقة متوفرة.تقوم هذه الورقة بتقييم إمكانات خلفية الانعطاف المورفولوجي باستخدام البيانات من ست لغات مع البيانات المسمى المسجلة من مورد Sigmorphon المشترك للبيانات والبيانات غير المسبقة من مصادر مختلفة.النتيجة الناتجة الأساسية هي أن Backtranslation يمكن أن تقدم تحسينات متواضعة في سيناريوهات الموارد المنخفضة، ولكن فقط إذا كانت البيانات غير المسبقة نظيفة للغاية وقد تم تصفيتها بنفس المعايير التوضيحية مثل البيانات المسمى.
Backtranslation is a common technique for leveraging unlabeled data in low-resource scenarios in machine translation. The method is directly applicable to morphological inflection generation if unlabeled word forms are available. This paper evaluates the potential of backtranslation for morphological inflection using data from six languages with labeled data drawn from the SIGMORPHON shared task resource and unlabeled data from different sources. Our core finding is that backtranslation can offer modest improvements in low-resource scenarios, but only if the unlabeled data is very clean and has been filtered by the same annotation standards as the labeled data.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه الورقة تقديم فريق Guclasp ل Sigmorphon 2021 المهمة المشتركة بشأن التعميم في توليد الانعطاف المورفولوجي.نقوم بتطوير نموذج متعدد اللغات للانضباط المورفولوجي والتركيز بشكل أساسي على تحسين النموذج باستخدام استراتيجيات تدريب مختلفة لتحسين الدقة والتعميم عبر اللغات.
تتحمل الأساليب الحالية لإدماج قيود المصطلحات في الترجمة الآلية (MT) عادة أن شرط القيد يتم توفيرها في أشكالهم المورفولوجية الصحيحة. هذا يحد من تطبيقه إلى سيناريوهات العالم الحقيقي حيث يتم توفير شروط القيد كمولماس. في هذه الورقة، نقدم إطارا وحدات لإدما
نحن تصف أنظمة NMT الخاصة بنا المقدمة إلى المهمة المشتركة WMT2021 في ترجمة الأخبار الإنجليزية - التشيكية: CUNI-DOCTRANSFORMER (CUBBITT على مستوى المستند) و Cuni-Marian-Baselines.نحن نحسن السابق بمعالجة أفضل من تجزئة الجملة وعلاج ما بعد معالجة الأخطاء
نقدم تقديم BME لمهمة Sigmorphon 2021 0 الجزء 1، التعميم عبر المهمة المشتركة بين اللغات المتنوعة من الناحية النموذجية.نحن نستخدم نموذج فك تشفير LSTM مع ثلاثة خطوات التدريب المدرب لأول مرة على جميع اللغات، ثم ضبطها على كل عائلة لغة وأخيرا ضبطها على الل
يمكن تعلم القواعد المورفولوجية ذات مستويات مختلفة من الخصوصية من مثال lexemes عن طريق التطبيق العسكري للحد الأدنى من التعميم (أولبرايت والهايس، 2002، 2003). النموذج الذي يتعلم القواعد فقط من خلال الحد الأدنى من التعميم كان يستخدم للتنبؤ بمتوسط تصنيفا