إلى جانب رزق BiAffine، تم تكييف المحولات بفعالية مع تحويل الرسائل النصية وحققت أداء حالة من الفن على تحليل عمرو.ومع ذلك، فإن العديد من الأعمال السابقة تعتمد على فك تشفير BiAffine لأي منهما أو كلا من القوس والملصقات على الرغم من أن معظم الميزات المستخدمة من قبل وحدة فك الترميز قد تتعلم من قبل المحول بالفعل.تقدم هذه الورقة نهجا جديدا لتحليل عمرو من خلال الجمع بين البيانات غير المتجانسة (الرموز والمفاهيم والملصقات) كإدخال واحد إلى محول لتعلم الانتباه، واستخدام مصفوفات الاهتمام فقط من المحول للتنبؤ بجميع العناصر في الرسوم البيانية AMR (المفاهيم، الأقواس،تسميات).على الرغم من أن نماذجنا تستخدم معلمات أقل بكثير من محلل الرسم البياني للحالة السابقة، فإنها تظهر دقة مماثلة أو أفضل على عمرو 2.0 و 3.0.
Coupled with biaffine decoders, transformers have been effectively adapted to text-to-graph transduction and achieved state-of-the-art performance on AMR parsing. Many prior works, however, rely on the biaffine decoder for either or both arc and label predictions although most features used by the decoder may be learned by the transformer already. This paper presents a novel approach to AMR parsing by combining heterogeneous data (tokens, concepts, labels) as one input to a transformer to learn attention, and use only attention matrices from the transformer to predict all elements in AMR graphs (concepts, arcs, labels). Although our models use significantly fewer parameters than the previous state-of-the-art graph parser, they show similar or better accuracy on AMR 2.0 and 3.0.
المراجع المستخدمة
https://aclanthology.org/
لالتقاط بنية الرسم البياني الدلالي من النص الخام، يتم بناء معظم طرق التلخيص الموجودة على GNNS مع نموذج مدرب مسبقا.ومع ذلك، فإن هذه الأساليب تعاني من إجراءات مرهقة وحسابات غير فعالة وثائق نصية طويلة.لتخفيف هذه المشكلات، تقترح هذه الورقة HETFORMER، وهو
مجردة، تم اقتراح العديد من المقاييس لتقييم تشابه (مجردة) بمعنى تمثيلات (AMRS)، لكن القليل يعرف عن الطريقة التي تتعلق بتصنيفات التشابه البشري. علاوة على ذلك، فإن المقاييس الحالية لديها نقاط القوة والضعف التكميلية: يتأكيد البعض على السرعة، في حين أن ال
AMR (تمثيل المعنى التجريدي) و EDS (هياكل التبعية الابتدائية) هي تمثيلين لمعنى شعبيتين في NLP / NLU.AMR أكثر مجردة ومفاهيمية، في حين أن EDS هو أعلى مستوى منخفض، أقرب إلى الهياكل المعجمية للجمل المحددة.وبالتالي ليس من المستغرب أن تحليل EDS أسهل من تحلي
تم تجاهل المعلومات النحوية والدلية الخارجية إلى حد كبير من قبل نماذج حل النواة العصبية الحالية.في هذه الورقة، نقدم نموذجا مقرا له من الرسوم البيانية غير متجانسة لإدماج الهياكل النحوية والدلالية للجمل.يحتوي الرسم البياني المقترح على رسم بياني فرعي سنو
نقدم مساهمتنا في المهمة المشتركة IWPT 2021 بشأن التحليل في التبعيات العالمية المعززة. مكون النظام الرئيسي الخاص بنا هو محلل خرطوم من أشجار الشجرة الهجين التي تدمج (أ) تنبؤات تمتد الأشجار الرسوم البيانية المحسنة مع (ب) حواف بياني إضافية غير موجودة في