ترغب بنشر مسار تعليمي؟ اضغط هنا

دمج EDS الرسم البياني لحل AMR

Incorporating EDS Graph for AMR Parsing

471   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

AMR (تمثيل المعنى التجريدي) و EDS (هياكل التبعية الابتدائية) هي تمثيلين لمعنى شعبيتين في NLP / NLU.AMR أكثر مجردة ومفاهيمية، في حين أن EDS هو أعلى مستوى منخفض، أقرب إلى الهياكل المعجمية للجمل المحددة.وبالتالي ليس من المستغرب أن تحليل EDS أسهل من تحليل عمرو.في هذا العمل، نفكر في استخدام معلومات من تحليل EDS للمساعدة في تحسين أداء تحليل عمرو.نعتمد محلل محلل ومقره انتقالي ويقترح بإضافة الرسوم البيانية EDS كيزات دلالة إضافية باستخدام تشفير رسم بياني يتكون من LSTM LETER وطبقة GCN.تبين نتائجنا التجريبية أن المعلومات الإضافية من تحليل EDS يعطي بالفعل دفعة إلى أداء محلل عمرو الأساسي المستخدمة في تجاربنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مجردة، تم اقتراح العديد من المقاييس لتقييم تشابه (مجردة) بمعنى تمثيلات (AMRS)، لكن القليل يعرف عن الطريقة التي تتعلق بتصنيفات التشابه البشري. علاوة على ذلك، فإن المقاييس الحالية لديها نقاط القوة والضعف التكميلية: يتأكيد البعض على السرعة، في حين أن ال بعض الآخر يجعل محاذاة هياكل الرسوم البيانية الصريحة، بسعر خطوة محاذاة مكلفة. في هذا العمل، نقترح مقاييس تشابه Weisfeiler-Leman Amr الجديدة التي توحد نقاط القوة المقاييس السابقة، مع تخفيف نقاط ضعفها. على وجه التحديد، فإن مقاييسنا الجديدة قادرة على مطابقة التحسسات الفاصلة والحرية والحث على N: M بين العقد. علاوة على ذلك، نقدم معيارا لمقاييس AMR بناء على الأهداف العلنية (الخيزران)، أول معيار لدعم التقييم التجريبي لمقاييس التشابه الرسمي في الرسم البياني. يزيد الخيزران إمكانية تفسير النتائج عن طريق تحديد أهداف علنية متعددة تتراوح بين أهداف تشابه الجملة لإجراء اختبارات الإجهاد التي تحقق متانة متري ضد تحويلات الرسم البياني المعني بالمعنى والمعنى. نعرض فوائد الخيزران عن طريق تنميط المقاييس السابقة ومقاييس خاصة بنا. تشير النتائج إلى أن مقاييس جديدة قد تكون بمثابة خط أساس قوي للعمل في المستقبل.
AM تحليل التبعية هي طريقة لتحليل الرسم البياني الدلالي العصبي الذي يستغل مبدأ التركيبية.على الرغم من أن محلل التبعية، فقد تبين أن محلل التبعية سريعة ودقيقة عبر العديد من الرسوم البيانية، فإنها تتطلب عبائيات صريحة لهياكل الأشجار التركيبية للتدريب.في ا لماضي، تم الحصول على هؤلاء استخدام الاستدلال المعقدة من الرسوم المشتركة من قبل الخبراء.هنا نظهر كيف يمكن تدريبهم بدلا من ذلك مباشرة على الرسوم البيانية مع نموذج متغير كامنة عصبي، مما يقلل بشكل كبير من كمية وتعقيد الاستدلال اليدوي.نوضح أن نموذجنا يلتقط العديد من الظواهر اللغوية بمفرده وتحقق دقة مماثلة للتدريب الخاضع للإشراف، مما يسهل بشكل كبير استخدام تحليل التبعية لشبانس جديدة.
النموذج المهيمن للتحلل الدلالي في السنوات الأخيرة هو صياغة تحليل كمركز تسلسل إلى تسلسل، وتوليد تنبؤات مع فك تراجع التسلسل التلقائي.في هذا العمل، نستكشف نموذجا بديلا.نقوم بصياغة تحليل دلالي كهامة تحليل التبعية، وتطبيق تقنيات فك التشفير المستندة إلى ال رسم البياني المتقدمة لتحليل النحوي.نحن نقارن مختلف تقنيات فك التشفير بالنظر إلى نفس التشفير المحول المدرب مسبقا في أفضل مجموعة البيانات، بما في ذلك الإعدادات التي تكون فيها بيانات التدريب محدودة أو تحتوي على أمثلة مشروح جزئيا فقط.نجد أن نهجنا القائم على الرسم البياني لدينا هو تنافسي مع فك ترميز الترميز على الإعداد المعياري، ويقدم تحسينات كبيرة في كفاءة البيانات والإعدادات حيث تتوفر البيانات المشروح جزئيا.
تفتقر إلى البيانات المشروحة غير المشروح بين الإنسان هي تحدي رئيسي واحد لتحليل تمثيل المعنى التجريدي (AMR). لتخفيف هذه المشكلة، عادة ما تستخدم الأعمال السابقة البيانات الفضية أو نماذج اللغة المدربة مسبقا. على وجه الخصوص. ومع ذلك، فإنه يجعل فك تشفير أب طأ نسبيا. في هذا العمل، نحقق مناهج بديلة لتحقيق أداء تنافسي بسرعات أسرع. نقترح محلل عمرو المبسط وتقنية تدريب مسبقة الاستخدام للاستخدام الفعال للبيانات الفضية. نقوم بإجراء تجارب مكثفة على مجموعة بيانات AMR2.0 المستخدمة على نطاق واسع وتظهرت النتائج أن محلل عمرو المحولات لدينا يحقق أفضل أداء بين النماذج المستندة إلى SEQ2Graph. علاوة على ذلك، مع البيانات الفضية، يحقق نموذجنا نتائج تنافسية مع نموذج SOTA، والسرعة هي أمر ذو حجم أسرع. تتم التحليلات التفصيلية للحصول على المزيد من الأفكار في نموذجنا المقترح وفعالية تقنية التدريب المسبق.
نقترح هندسة محول الرسم البياني المتكرر للرسوم البيانية التلقائي (Rngtr) من أجل تحسين الرسوم البيانية التعسفية من خلال التطبيق العسكري لمحول الرسم البياني غير التلقائي إلى الرسم البياني وتطبيقه على تحليل التبعية النحوية.نوضح قوة وفعالية Rngtr على العد يد من شركات التبعية، باستخدام نموذج التقييم المدرب مسبقا مع بيرت.نقدم أيضا محولات محول النحوية (Sytr)، وهي محلل غير متكرر مشابهة لنموذج التقييم الخاص بنا.يمكن Rngtr تحسين دقة مجموعة متنوعة من المحللين الأوليين في 13 لغة من التبعيات الشاملة TreeBanks والإنجليزية والصينية Benn Treebanks، والجوربوس الألماني Conll2009، وحتى تحسين النتائج الجديدة على النتائج الجديدة التي حققتها Systr، بشكل كبيرتحسين أحدث حديثة لجميع الشركات التي تم اختبارها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا