في هذه الدراسة، ندرس تغيير اللغة في Biji الصينية باستخدام مهمة التصنيف: تصنيف النصوص الصينية القديمة حسب الفترات الزمنية. على وجه التحديد، نحن نركز على نوع فريد من نوعه في الأدب الصيني الكلاسيكي: BIJI (حرفيا دفتر الملاحظات "أو الملاحظات الفرشاة")، أي مجموعة من الحكايات، الاقتباسات، إلخ، أي شيء مؤلفين ينظرون إلى جديرة بالملاحظة، تمتد Biji مئات السنين عبر العديد من السلالات والحفاظ على لغة غير رسمية في شكل مكتوب. لهذه الأسباب، يعتبرون موردا جيدا لتحقيق تغيير اللغة في الصينية (فانغ، 2010). في هذه الورقة، نقوم بإنشاء مجموعة بيانات جديدة من 108 Biji عبر أربع سلالات. بناء على DataSet، نقدم أولا مهمة تصنيف الفترة الزمنية للصينيين. ثم نحقق في طرق تمثيل ميزة مختلفة للتصنيف. تظهر النتائج أن النماذج باستخدام المدينات السياقية تؤدي الأفضل. يؤكد تحليل لأعلى الميزات المختارة من قبل نموذج Word N-Gram (بعد التبييض الأسماء المناسبة) أن هذه الميزات مفيدة وتتوافق مع الملاحظات والافتراضات المقدمة من اللغويين التاريخيين.
In this study, we study language change in Chinese Biji by using a classification task: classifying Ancient Chinese texts by time periods. Specifically, we focus on a unique genre in classical Chinese literature: Biji (literally notebook'' or brush notes''), i.e., collections of anecdotes, quotations, etc., anything authors consider noteworthy, Biji span hundreds of years across many dynasties and conserve informal language in written form. For these reasons, they are regarded as a good resource for investigating language change in Chinese (Fang, 2010). In this paper, we create a new dataset of 108 Biji across four dynasties. Based on the dataset, we first introduce a time period classification task for Chinese. Then we investigate different feature representation methods for classification. The results show that models using contextualized embeddings perform best. An analysis of the top features chosen by the word n-gram model (after bleaching proper nouns) confirms that these features are informative and correspond to observations and assumptions made by historical linguists.
المراجع المستخدمة
https://aclanthology.org/
نستخدم شبكات انتباه Hypergraph (Hypergat) للتعرف على ملصقات متعددة من النصوص الصينية الفكاهة.نحن أولا تمثل مزحة كملفوق.يتم استخدام هياكل Hyperedge المتسلسلة واللالسة الدلالية لبناء Hyperedges.ثم، يتم اعتماد آليات الاهتمام لمعلومات السياق التجميعية ال
في نمو العالم اليوم والتكنولوجيا المتقدمة، تلعب شبكات وسائل التواصل الاجتماعي دورا مهما في التأثير على الأرواح البشرية.الرقابة هي الإطاحة عن الكلام أو ناقل الحركة العام أو التفاصيل الأخرى التي تلعب دورا كبيرا في وسائل التواصل الاجتماعي.قد يتم اعتبار
العثور على سنة الكتابة لنص تاريخي له أهمية حاسمة للبحث التاريخي.ومع ذلك، نادرا ما يتم ذكر السنة الإبداعية الأصلية بشكل صريح ويجب استنتاجها من المحتوى النصي والسجلات التاريخية والقرائن الترفيزية.بالنظر إلى نص مكبس، فقد تم استخدام تعلم الجهاز بنجاح لتق
تقدمت نماذج اللغة المحددة مثل بيرت حالة الفن للعديد من مهام NLP. لغات غنية بالموارد، لدى المرء الاختيار بين عدد من النماذج الخاصة باللغة، في حين أن النماذج متعددة اللغات تستحق الدراسة أيضا. هذه النماذج معروفة جيدا لأدائها Croadlingual، لكنها أظهرت أي
قدمنا في هذا البحث دراسة مفصلة لطرق التنقيب في البيانات النصية
و الإمكانيات المتوفرة في لغة الاستعلام الإجرائية PL/SQL التي تتعامل مع قواعد بيانات
أوراكل الغرضية للقيام بذلك. و من ثم قمنا ببناء نموذج تنقيب يعمل على تصنيف وثائق
النصوص العربية باست