دقة النفي النفي هي مفتاح استخراج المعلومات عالية الجودة من النصوص السريرية، ولكن حتى الآن، كانت الجهود المبذولة لجعل المشفرين المستخدمة في نفي استخراج المعلومات، كانت تقتصر على اللغة الإنجليزية.نقدم نهجا عالميا لاستحقاق النرجب متعدد اللغات اللغوي، الذي يتغلب على عدم وجود بيانات تدريبية من خلال الاعتماد على الموارد المتفاوتة بلغات ومجالات مختلفة.نقيم نهجين للتعلم من هذه الموارد، والتدريب على البيانات والتدريب المجمع في إعداد التعلم متعدد المهام.تظهر تجاربنا أن دقة النطاق الصفرية في النص السريري ممكن، وأن الجمع بين الموارد المتاحة تعمل على تحسين الأداء في معظم الحالات.
Negation scope resolution is key to high-quality information extraction from clinical texts, but so far, efforts to make encoders used for information extraction negation-aware have been limited to English. We present a universal approach to multilingual negation scope resolution, that overcomes the lack of training data by relying on disparate resources in different languages and domains. We evaluate two approaches to learn from these resources, training on combined data and training in a multi-task learning setup. Our experiments show that zero-shot scope resolution in clinical text is possible, and that combining available resources improves performance in most cases.
المراجع المستخدمة
https://aclanthology.org/
الهند هي واحدة من أغنى مراكز اللغات على الأرض وهي متنوعة للغاية وتعدد اللغات. ولكن بصرف النظر عن عدد قليل من اللغات الهندية، ما زال معظمهم يعتبرون فقراء الموارد. نظرا لأن معظم تقنيات NLP تتطلب معرفة لغوية لا يمكن تطويرها إلا من قبل الخبراء والمتحدثين
الأساليب القائمة على المحولات جذابة لتصنيف النص متعدد اللغات، ولكن معايير البحوث الشائعة مثل XNLI (Conneau et al.، 2018) لا تعكس توافر البيانات ومجموعة واسعة من تطبيقات الصناعة.نقدم مقارنة تجريبية من نماذج تصنيف النص المستند إلى المحولات في مجموعة مت
إن محول نقل النص إلى النص الأخير "'(T5) عند الاستفادة من تنسيق نصي إلى نص موحد ومقياس لتحقيق النتائج الحديثة على مجموعة واسعة من مهام NLP باللغة الإنجليزية.في هذه الورقة، نقدم MT5، وهو متغير متعدد اللغات من T5 الذي تم تدريبه مسبقا على مجموعة بيانات ج
وقد ركز العمل الحديث على الجيل العام متعدد اللغات من AMR إلى النص بشكل حصري على استراتيجيات تكبير البيانات التي تستخدم AMR الفضي.ومع ذلك، فإن هذا يفترض جودة عالية من الأمراض العامية التي تم إنشاؤها، مما يحتمل على الحد من قابلية النقل إلى المهمة المست
تقدم هذه الورقة Norecneg - مجموعة بيانات النفي الأولى المشروح للنرويجية.تم تفاح الإشارات النفي والعنوان الواحدة في الجملة عبر أكثر من 11 ألف جمل تمتد أكثر من 400 وثيقة لمجموعة فرعية من الاستعراض النرويجي Corpus (Norec).بالإضافة إلى تقديم مناقشة متعمق