في مهام توليد اللغة الطبيعية، يتم استخدام نموذج لغة عصبي لتوليد سلسلة من الكلمات التي تشكل جملة.يمكن اعتبار مصفوفة الوزن الأعلى من طراز اللغة، المعروف باسم طبقة التصنيف، كمجموعة من المتجهات، كل منها يمثل كلمة مستهدفة من قاموس الهدف.يتم تعلم ومكافحة الكلمات المستهدفة، إلى جانب بقية المعلمات النموذجية، أثناء التدريب.في هذه الورقة، نقوم بتحليل الممتلكات المشفرة في المتجهات المستهدفة والسؤال على ضرورة تعلم هذه المتجهات.نقترح تعيين ناقلات المستهدفة بشكل عشوائي وتحديدها على أنها ثابتة حتى يتم إجراء تحديثات للأوزان أثناء التدريب.نظهر أنه من خلال استبعاد ناقلات التحسين، ينخفض عدد المعلمات بشكل كبير مع تأثير هامشي على الأداء.نوضح فعالية طريقتنا في التسمية التوضيحية للصورة والترجمة الآلية.
In natural language generation tasks, a neural language model is used for generating a sequence of words forming a sentence. The topmost weight matrix of the language model, known as the classification layer, can be viewed as a set of vectors, each representing a target word from the target dictionary. The target word vectors, along with the rest of the model parameters, are learned and updated during training. In this paper, we analyze the properties encoded in the target vectors and question the necessity of learning these vectors. We suggest to randomly draw the target vectors and set them as fixed so that no weights updates are being made during training. We show that by excluding the vectors from the optimization, the number of parameters drastically decreases with a marginal effect on the performance. We demonstrate the effectiveness of our method in image-captioning and machine-translation.
المراجع المستخدمة
https://aclanthology.org/
نسأل الموضوعات سواء كانوا ينظرون إلى وجود مجموعة من النصوص، وبعضها مكتوب بالفعل، في حين يتم إنشاء آخرين تلقائيا.نحن نستخدم هذه البيانات لضبط نموذج GPT-2 لدفعه لتوليد المزيد من النصوص التي يشبه الإنسان، ومراقبة أن هذا النموذج الذي تم ضبطه بشكل جيد ينت
إن ظهور التعلم العميق وتوافر مجموعات البيانات الكبيرة على نطاق واسع قد تسريع البحوث حول توليد اللغة الطبيعية مع التركيز على المهام الأحدث والنماذج الأفضل. مع تقدم سريع هذا، من الضروري تقييم مدى التقدم العلمي المحرز وتحديد المجالات / المكونات التي تحت
يشكل جيل النص المخصب المعرفي تحديات فريدة من نوعها في النمذجة والتعلم، مما يدفع البحوث النشطة في العديد من الاتجاهات الأساسية، بدءا من النمذجة المتكاملة للتمثيل العصبي والمعلومات الرمزية في الهياكل التسلسلية / الهرمية / الهرمية، والتعلم دون إشراف مبا
نقترح نهجا لاختبار الأصالة تلقائيا في مهام الجيل حيث توجد أي تدابير تلقائية قياسية موجودة.يتناول اقتراحنا الاستخدامات الأصلية للغة، وليس بالضرورة الأفكار الأصلية.نحن نقدم خوارزمية لنهجنا وتحليل وقت التشغيل.الخوارزمية، التي تجد جميع الشظايا الأصلية في
نحن نقدم جوهرة، معيار معيشة لتوليد اللغة الطبيعية (NLG)، تقييمه، ومقاييسه.تعتمد التقدم المحرز في NLG على نظام بيئي متطور باستمرار للمقاييس الآلية ومجموعات البيانات ومعايير التقييم البشري.نظرا لهذا الهدف المتحرك، لا تزال هناك نماذج جديدة غالبا ما لا ت