نقدم تقنية جديدة لتوليد الصفر عن إعادة صياغة الصفر.المساهمة الرئيسية هي طراز إعادة صياغة متعددة اللغات من طرف تم تدريبه على استخدام كورسرا المتوازي المترجمة لتوليد الصياغة في المساحات المعنى "- استبدال طبقة SoftMax النهائية مع Adgeddings Word.يتيح هذا التعديل المعماري، بالإضافة إلى إجراء تدريبي يشتمل على هدف AutoNCoding، مع المعلمة الفعالة تقاسم لغات لمزيد من إعادة كتابة أحادي الأبعاد بطلاقة، ويسهل الطلاقة والتنوع في المخرجات التي تم إنشاؤها.تتفوق نماذج توليد الناتج المستمر الناتج عن إعادة صياغة خطوط خطوط خطوط إعادة صياغة صفرية عند تقييم لغتين باستخدام بطارية من المقاييس الحسابية وكذلك في التقييم البشري.
We present a novel technique for zero-shot paraphrase generation. The key contribution is an end-to-end multilingual paraphrasing model that is trained using translated parallel corpora to generate paraphrases into meaning spaces'' -- replacing the final softmax layer with word embeddings. This architectural modification, plus a training procedure that incorporates an autoencoding objective, enables effective parameter sharing across languages for more fluent monolingual rewriting, and facilitates fluency and diversity in the generated outputs. Our continuous-output paraphrase generation models outperform zero-shot paraphrasing baselines when evaluated on two languages using a battery of computational metrics as well as in human assessment.
المراجع المستخدمة
https://aclanthology.org/
تعمل السابقة على جيل إعادة صياغة صياغة يتم التحكم فيها بشكل كبير على بيانات إعادة صياغة مباشرة على نطاق واسع غير متوفرة بسهولة للعديد من اللغات والمجالات. في هذه الورقة، نأخذ هذا الاتجاه البحثي إلى أقصى الحدود والتحقيق فيما إذا كان من الممكن تعلم تول
استفاد من إعادة صياغة الصياغة على نطاق واسع من التقدم الأخير في تصميم الأهداف التدريبية والبنية النموذجية. ومع ذلك، تركز الاستكشافات السابقة إلى حد كبير على الأساليب الخاضعة للإشراف، والتي تتطلب كمية كبيرة من البيانات المسمى ذات مكلفة لجمعها. لمعالجة
تحسن تبسيط النص قابلية قراءة الجمل من خلال العديد من تحويلات إعادة كتابة، مثل إعادة الصياغة المعجمية والحذف والتقشير. تعتبر أنظمة التبسيط الحالية في الغالب نماذج تسلسل التسلسل التي يتم تدريبها على نهاية إلى نهاية لأداء كل هذه العمليات في وقت واحد. وم
يعد تدريب الاتساق غير الخاضع للتناسق طريقة للتعلم شبه الإشرافه يشجع الاتساق في التنبؤات النموذجية بين البيانات الأصلية والمعزز.للحصول على التعرف على الكيان المسمى (NER)، زيادة النهج الحالية تسلسل الإدخال مع استبدال الرمز المميز، بافتراض التعليقات الت
تجزئة موضوع الحوار أمر بالغ الأهمية في العديد من مشاكل نموذج الحوار.ومع ذلك، فإن النهج الشائعة غير المعينة الشائعة لاستغلال الميزات السطحية فقط في تقييم التماسك الموضعي بين الكلام.في هذا العمل، نتعامل مع هذا القيد من خلال الاستفادة من الإشارات الإشرا