في الدراسات السريرية، تستخدم Chatbots MiMicking تفاعلات الطبيب المريض في جمع معلومات حول الحالة الصحية للمريض.في وقت لاحق، يجب معالجتها هذه المعلومات وهيكلية للطبيب.طريقة واحدة لتنظيمها هي تلقائيا ملء الاستبيانات من محادثة الإنسان بوت.من شأنه أن يساعد الطبيب في اكتشاف القضايا المحتملة.نظرا لعدم وجود مجموعة بيانات من هذا القبيل المتاحة لهذه المهمة، فإن مجموعتها مكلفة وحساسة، ونحن نستكشف قدرات نماذج طلقة صفرية للحديث عن الإجابة على السؤال والاستدلال النصي والتصنيف النصي.نحن نقدم تحليلا مفصلا للنتائج واقتراح المزيد من الاتجاهات لملء الاستبيان السريري.
In clinical studies, chatbots mimicking doctor-patient interactions are used for collecting information about the patient's health state. Later, this information needs to be processed and structured for the doctor. One way to organize it is by automatically filling the questionnaires from the human-bot conversation. It would help the doctor to spot the possible issues. Since there is no such dataset available for this task and its collection is costly and sensitive, we explore the capacities of state-of-the-art zero-shot models for question answering, textual inference, and text classification. We provide a detailed analysis of the results and propose further directions for clinical questionnaire filling.
المراجع المستخدمة
https://aclanthology.org/
دعا النجاح الأخير لنماذج اللغة العصبية (NLMS) على تحدي مخطط Winograd إلى مزيد من التحقيق في قدرة المنطق المنطقي لهذه النماذج. تعتمد مجموعات البيانات التشخيصية السابقة على مصادر الحشد التي تفشل في توفير أمر مناسب متماسك لحل مشاكل WSC. لتحسين تقييم NLM
يمكن للكشف عن الموقف على وسائل التواصل الاجتماعي المساعدة في تحديد وفهم الأخبار أو التعليق المائل في الحياة اليومية.في هذا العمل، نقترح نموذجا جديدا للكشف عن موقف صفرية على Twitter يستخدم التعلم الخصم للتعميم عبر الموضوعات.ينص نموذجنا على الأداء الحد
في هذه الورقة، ندرس مشكلة الاعتراف بمفاهيم كائن السمات التركيبية داخل إطار التعلم الصفرية (ZSL). نقترح شبكة اعتقالة على الحلقة (EPICA) التي تعتمد على الحلقة التي تجمع بين مزايا آلية الانتباه العابر واستراتيجية التدريب القائمة على الحلقة للتعرف على ال
تتطلب المهام الفرعية لتصنيف النية، مثل التواضع على تحول التوزيع، والتكيف مع مجموعات المستخدمين المعينة والتخصيص، والكشف خارج المجال، ومجموعات بيانات واسعة ومرنة للتجارب والتقييم.نظرا لأن جمع مجموعات البيانات هذه هي الوقت والمستهلك للعمل، نقترح استخدا
إلى جانب توفر مجموعات بيانات واسعة النطاق، مكنت هياكل التعلم العميق التقدم السريع في مهمة الإجابة على السؤال.ومع ذلك، فإن معظم مجموعات البيانات هذه باللغة الإنجليزية، وأدائيات النماذج متعددة اللغات الحديثة أقل بكثير عند تقييمها على البيانات غير الإنج