ترغب بنشر مسار تعليمي؟ اضغط هنا

دمج جيل البيانات غير المدعوم في الترجمة الآلية العصبية الإشراف ذاتيا لغات الموارد المنخفضة

Integrating Unsupervised Data Generation into Self-Supervised Neural Machine Translation for Low-Resource Languages

366   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

بالنسبة لمعظم مجموعات اللغة والبيانات الموازية إما نادرة أو غير متوفرة ببساطة.لمعالجة هذا والترجمة الآلية غير المرفوعة (UMT) باستغلال كميات كبيرة من البيانات الأحادية من خلال استخدام تقنيات توليد البيانات الاصطناعية مثل الترجمة الخلفية والتوزيع وبينما يحدد NMT (SSNMT) بشكل مرئي جمل متوازية في بيانات وقابلة للمقارنة أصغر.لهذا التاريخ، لم يتم التحقيق في تقنيات توليد بيانات UMT في SSNMT.نظهر أنه بما في ذلك تقنيات UMT في SSNMT تتفوق بشكل كبير SSNMT (يصل إلى +4.3 بلو و AF2EN) بالإضافة إلى خطوط خطوط إحصائية (+50.8 بلو) و Sybrid UMT (+51.5 بلو) على أزواج لغة ذات صلة وغير ذات صلة وغير ذات صلة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

في هذا العمل، نحقق في أساليب المهمة الصعبة المتمثلة في الترجمة بين أزواج لغة الموارد المنخفضة التي تظهر بعض مستوى التشابه.على وجه الخصوص، نعتبر فائدة نقل التعلم للترجمة بين العديد من لغات الموارد المنخفضة الأوروبية من الهند من الأسر الجرمانية والروما نسية.على وجه الخصوص، نبني اثنين من الطبقات الرئيسية من النظم القائمة على النقل لدراسة كيفية استخدام ترابط الأداء الترجمة.النظام الأساسي يضم النموذج الذي تم تدريبه مسبقا على زوج لغة ذات صلة ونظام قابل للتناقض بشكل جيد-قم بإلغاء التدريب مسبقا على زوج لغة غير ذات صلة.تبين تجاربنا أنه على الرغم من أن المرتبطة ليست ضرورية لنقل التعلم للعمل، إلا أنها تنفذ أداء نموذجي.
من الصعب للغاية ترجمة لغات Dravidian، مثل Kannada و Tamil، على ترجمة النماذج العصبية الحديثة.ينبع هذا من حقيقة أن هذه اللغات غنية بالمثل للغاية بالإضافة إلى توفير الموارد منخفضة الموارد.في هذه الورقة، نركز على تجزئة الكلمات الفرعية وتقييم الحد من الم فردات الدوافع اللغوية (LMVR) مقابل الجملة الأكثر استخداما (SP) لمهمة الترجمة من اللغة الإنجليزية إلى أربعة لغات Dravidian مختلفة.بالإضافة إلى ذلك، نحقق في حجم المفردات الفرعية المثلى لكل لغة.نجد أن SP هو الخيار الأكثر شمولا للتجزئة، وأن أحجام القاموس الأكبر تؤدي إلى جودة الترجمة الأعلى.
تصف هذه الورقة مشاركة الفريق Onenlp (LTRC، IIIT-Hyderabad) لمهمة WMT 2021، ترجمة لغوية مماثلة.لقد جربنا الترجمة الآلية العصبية القائمة على المحولات واستكشف استخدام تشابه لغة Tamil-Telugu وتيلجو التاميل.لقد أدمجنا استخدام تكوينات الكلمات الفرعية المخت لفة، وتحويل البرنامج النصي والتدريب النموذجي الفردي لكلا الاتجاهين كجارب استكشافية.
في الترجمة الآلية المتزامنة، والعثور على وكيل مع تسلسل العمل الأمثل للقراءة والكتابة التي تحتفظ بمستوى عال من جودة الترجمة مع التقليل من التأخر المتوسط ​​في إنتاج الرموز المستهدفة لا يزال مشكلة صعبة للغاية. نقترح نهج تعليمي تحت إشراف رواية لتدريب وكي ل يمكنه اكتشاف الحد الأدنى لعدد القراءة المطلوبة لتوليد كل رمزية مستهدفة من خلال مقارنة الترجمات المتزامنة ضد ترجمات الجملة الكاملة أثناء التدريب لإنشاء تسلسل عمل أوراكل. يمكن بعد ذلك استخدام تسلسل أوراكل هذه لتدريب نموذج إشراف لتوليد العمل في وقت الاستدلال. يوفر نهجنا بديلا عن طرق التشكيل الحالية في الترجمة المتزامنة من خلال تقديم هدف تدريب جديد، وهو أمر أسهل للتدريب من المحاولات السابقة في تدريب الوكيل باستخدام تقنيات تعليم التعزيز لهذه المهمة. تظهر نتائجنا التجريبية أن طريقة التدريب الجديدة لتوليد العمل تنتج ترجمات عالية الجودة مع تقليل التأخر المتوسط ​​في الترجمة الفورية.
في هذه الورقة ونحن نستكشف تقنيات مختلفة للتغلب على تحديات الموارد المنخفضة في الترجمة الآلية العصبية (NMT) وتركز على وجه التحديد على حالة اللغة الإنجليزية الماراثية NMT. تتطلب أنظمة NMT كمية كبيرة من كورسا الموازية للحصول على ترجمات ذات نوعية جيدة. ن حاول تخفيف مشكلة الموارد المنخفضة عن طريق زيادة Corpora الموازية أو باستخدام تعلم النقل. تستخدم تقنيات مثل حقن الجدول العبارة (PTI) والترجمة الخلفي وخلط لغة اللغة لتعزيز البيانات الموازية؛ في حين أن المظلات المحورية والمحسبات متعددة اللغات تستخدم للاستفادة من تعلم التحويل. بالنسبة للمحور المحوري، تأتي الهندية في اللغة المساعدة للترجمة الإنجليزية المهاراتية. بالمقارنة مع نموذج محول الأساس، يلاحظ اتجاه تحسن كبير في درجة بلو عبر تقنيات مختلفة. لقد قمنا بإجراء تقييم واسع النطاق والتولي والنوعي لأنظمنا. نظرا لأن الاتجاه في الترجمة الآلية (MT) اليوم هو ما بعد التحرير وقياس الحد من الجهود البشرية (لها)، ونعطينا ملاحظاتنا الأولية لمعدل تحرير الترجمة (TER) مقابل دراسة درجة بلو وحيث يعتبر TER كتدبير لها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا