تعاني نماذج تلخيص مقرها العصبي من الحد الأقصى للتوافق في تشفير النص.يجب اقتطاع المستندات الطويلة قبل إرسالها إلى النموذج، مما يؤدي إلى فقدان هائل للمحتويات الملخص ذات الصلة.لمعالجة هذه المشكلة، نقترح شبكة المحدد المنزلق بالذاكرة الديناميكية لعلمة الاستخراجية للمستندات الطويلة النموذجية، والتي توظف نافذة انزلاقية لاستخراج قطاع الجمل الموجز حسب القطاع.علاوة على ذلك، نعتمد آلية الذاكرة للحفاظ على معلومات التاريخ وتحديثها بشكل حيوي، مما يسمح للتدفق الدلالي عبر نوافذ مختلفة.النتائج التجريبية على مجموعة بيانات واسعة النطاق تتكون من أوراق علمية تثبت أن طرازنا تتفوق بشكل كبير على النماذج السابقة للحالة السابقة.علاوة على ذلك، نقوم بإجراء تحقيقات نوعية وكمية حول كيفية عملنا النموذجي وأين يأتي مكسب الأداء.
Neural-based summarization models suffer from the length limitation of text encoder. Long documents have to been truncated before they are sent to the model, which results in huge loss of summary-relevant contents. To address this issue, we propose the sliding selector network with dynamic memory for extractive summarization of long-form documents, which employs a sliding window to extract summary sentences segment by segment. Moreover, we adopt memory mechanism to preserve and update the history information dynamically, allowing the semantic flow across different windows. Experimental results on two large-scale datasets that consist of scientific papers demonstrate that our model substantially outperforms previous state-of-the-art models. Besides, we perform qualitative and quantitative investigations on how our model works and where the performance gain comes from.
المراجع المستخدمة
https://aclanthology.org/
لالتقاط بنية الرسم البياني الدلالي من النص الخام، يتم بناء معظم طرق التلخيص الموجودة على GNNS مع نموذج مدرب مسبقا.ومع ذلك، فإن هذه الأساليب تعاني من إجراءات مرهقة وحسابات غير فعالة وثائق نصية طويلة.لتخفيف هذه المشكلات، تقترح هذه الورقة HETFORMER، وهو
تهدف تلخيص النص الاستخراجي إلى استخراج الأحكام الأكثر تمثيلا من وثيقة معينة كملخص لها. لاستخراج ملخص جيد من وثيقة نصية طويلة، يلعب تضمين الجملة دورا مهما. تتمتع الدراسات الحديثة باختصار شبكات عصبية لالتقاط العلاقة بين العلاقة بين الأمريكيين (مثل الرس
تهدف التلخيص التلقائي إلى استخراج معلومات مهمة من كميات كبيرة من البيانات النصية من أجل إنشاء إصدار أقصر من النصوص الأصلية مع الحفاظ على معلوماتها. تعتمد تدريب نماذج تلخيص الاستخراجية التقليدية بشكل كبير على الملصقات المهندسة البشرية مثل التعليقات ال
تعرض تعقيدات الحسابية والذاكرة التربيعية للمحولات الكبيرة محدودة قابلية توسعها لتلخيص وثيقة طويلة.في هذه الورقة، نقترح هيبوس، وهو اهتمام مفكف مفكف من التشفير مع خطوات وضعية من الدرجة الأولى بفعالية المعلومات البارزة من المصدر.ونحن كذلك إجراء دراسة من
هناك فرق حاسم بين تلخيص المستندات الفردية والمتعددة هو كيف يتجلى المحتوى البارز نفسه في المستند (المستندات). على الرغم من أن هذا المحتوى قد يظهر في بداية وثيقة واحدة، إلا أن المعلومات الأساسية تكرر بشكل متكرر في مجموعة من المستندات المتعلقة بموضوع مع