ترغب بنشر مسار تعليمي؟ اضغط هنا

تصميم نظام استرداد وقراءة الحد الأدنى للنظام مفتوح للنطاق الرد

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering

458   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في الإجابة على الأسئلة المفتوحة للنطاق الرد (ضمان الجودة)، فإن آلية استرداد وقراءة القراءة لها الاستفادة المتأصلة من الترجمة الترجمة من الترجمة الشفوية وسهولة إضافة أو إزالة أو تحرير المعرفة مقارنة بالنهج المعلمة لنماذج QA كتاب مغلقة.ومع ذلك، من المعروف أيضا أن تعاني من بصمة التخزين الكبيرة بسبب كوربوس وثائقها ومؤشرها.هنا، نناقش العديد من الاستراتيجيات المتعامدة لتقليل البصمة بشكل كبير من نظام QA لاسترداد ونظام QA المتسترف والقراءة بنسبة تصل إلى 160X.تشير نتائجنا إلى أن استرداد وقراءة القراءة يمكن أن يكون خيارا قابلا للتطبيق حتى في بيئة تخدم عالية للغاية مثل أجهزة الحافة، حيث نظهر أنه يمكن أن يحقق دقة أفضل من نموذج حزم بحزم مع حجم نظام منخفض المستوى من Docker.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حققت استرجاع النص العصبي الكثيف نتائج واعدة حول السؤال المفتوح للنطاق الرد (QA)، حيث يتم استغلال تمثيلات كامنة للأسئلة والمراجيات للحصول على أقصى قدر من البحث الداخلي في عملية الاسترجاع. ومع ذلك، فإن المستردات الكثيفة الحالية تتطلب تقسيم المستندات إل ى مقاطع قصيرة تحتوي عادة على سياق محلي جزئي ومحازي في بعض الأحيان، وتعتمد بشدة على عملية تقسيم. ونتيجة لذلك، قد تسفر عن تعويضات مخفية غير دقيقة ومضللة، مما تدهور نتيجة الاسترجاع النهائي. في هذا العمل، نقترح استرجاع هرمي هرمي كثيف (DHR)، وهو إطار هرمي يمكنه إنشاء تمثيلات كثيفة دقيقة من الممرات من خلال الاستفادة من كل من الدلالات الكبيرة في الوثيقة والدليل المجهري المحدد لكل مقطع. على وجه التحديد، يحدد المسترد على مستوى المستند أولا المستندات ذات الصلة، من بينها يتم استرداد المقاطع ذات الصلة من خلال المسترد لمستوى المقاطع. سيتم معايرة ترتيب الممرات المستردة من خلال دراسة أهمية مستوى الوثيقة. بالإضافة إلى ذلك، يتم التحقيق في هيكل العنوان الهرمي واستراتيجيات أخذ العينات السلبية (I.E.، في السلبيات في السلبيات) في السلبيات). نطبق DHR إلى مجموعات بيانات QA مفتوحة على نطاق واسع. تتفوق DHR بشكل كبير على استرداد المقطع الكثيف الأصلي، ويساعد نظام ضمان الجودة في نهاية إلى نهاية يتفوق على الأساس القوي على معايير QA متعددة النطاق.
التقدم الملخص في النمذجة المتبادلة يعتمد على مجموعات التقييم الصعبة والواقعية والتنوع.نقدم أسئلة وأجوبة معارف متعددة اللغات (MKQA)، وهي سؤالا مفتوحا في مجال الإجابة على مجموعة التقييم التي تضم أزواج من الإجابات السؤال 10 كيلو محاذاة عبر 26 لغة متنوعة من الناحية النموذجية (أزواج الإجابة السؤال 260k في المجموع).تستند الإجابات إلى تمثيل بيانات غير مستقر بشدة، مما يجعل النتائج قابلة للمقارنة عبر اللغات والمستقل عن الممرات الخاصة باللغة.مع 26 لغة، توفر مجموعة البيانات هذه الأوسع نطاقا من اللغات حتى الآن لتقييم الإجابة على السؤال.نحن نقسم مجموعة متنوعة من الأساليب وخطوط الأساس للدولة والأساس للاستخراج الاستقبال، المدربين على الأسئلة الطبيعية، في صفر لقطة وإعدادات الترجمة.تشير النتائج إلى أن هذه البيانات تتحدى حتى باللغة الإنجليزية، ولكن خاصة في لغات الموارد المنخفضة
تعد المعلومات التي تطلبها خطوة أساسية للسؤال المفتوح الإجابة على جمع الأدلة الكفاءة من كوربوس كبيرة. في الآونة الأخيرة، أثبتت النهج التكرارية أن تكون فعالة للأسئلة المعقدة، من خلال استرداد أدلة جديدة بشكل متكرر في كل خطوة. ومع ذلك، فإن جميع الأساليب التكرارية الحالية تقريبا تستخدم استراتيجيات محددة مسبقا، إما تطبيق نفس وظيفة الاسترجاع عدة مرات أو إصلاح ترتيب وظائف استرجاع مختلفة، والتي لا يمكنها الوفاء بالمتطلبات المتنوعة من الأسئلة المختلفة. في هذه الورقة، نقترح استراتيجية رواية تكيفية تسعى للحصول على معلومات عن أسئلة مفتوحة، وهي AISO. على وجه التحديد، يتم تصميم عملية الاسترجاع والأجوبة بأكملها كعملية اتخاذ قرار Markov الملحوظ جزئيا، حيث يتم تعريف ثلاثة أنواع من عمليات استرجاع (مثل E.G.، BM25 و DPR وارتباط التشعبي) وعملية إجابة واحدة كإجراءات. وفقا للسياسة المستفادة، يمكن ل AISO اختيار إجراءات استرجاع مناسبة ستكيفا للبحث عن الأدلة المفقودة في كل خطوة، بناء على الأدلة التي تم جمعها واستفسلة إعادة صياغة، أو إخراج الإجابة مباشرة عندما تكون مجموعة الأدلة كافية للسؤال. تبين تجارب في تشكيلة مفتوحة و hotpotqa fullwiki، التي تخدم مع معايير قافلة واحدة مفتوحة ومتعددة النطاق، أن AISO تفوقت على جميع الأساليب الأساسية مع استراتيجيات محددة مسبقا فيما يتعلق بتقييمات الاسترجاع والإجابة.
يعمل العمل الأخير (فنغ وآخرون.، 2018) وجود شظايا مدخلات قصيرة غير قابلة للتفسير التي تحقق ثقة عالية ودقة في النماذج العصبية. نشير إلى هذه المدخلات الحد الأدنى للحفاظ على التنبؤ (MPPIS). في سياق الإجابة على السؤال، نحن نحقق في الفرضيات المتنافسة لوجود MPPIs، بما في ذلك ضعف المعايرة الخلفية للنماذج العصبية، ونقص الاحيلات، وتحيز DataSet "(حيث يتعلم نموذج الحضور إلى العظة الزائفة غير الجماعية بيانات التدريب). نكتشف التحير الثابت في MPPIS إلى بذور التدريب العشوائي، والهندسة المعمارية النموذجية، ومجال التدريب، والمجال التدريبي. إظهار MPPIS إمكانية نقل رائعة عبر المجالات التي تحقق أداء أعلى بكثير من استفسارات قصيرة مماثلة. بالإضافة إلى ذلك، فشل معاقبة الثقة الزائدة في MPPIS تحسين إما التعميم أو المتانة الخصومة. تشير هذه النتائج إلى إمكانية تفسير MPPIS غير كافية لتوصيف قدرة التعميم لهذه النماذج. نأمل أن يشجع هذا التحقيق المركز تحليلا منهجيا للسلوك النموذجي خارج التوزيع القابل للتفسير البشري للأمثلة.
يسأل الأسئلة المفتوحة الإجابة على تحديد إجابات الأسئلة التي أنشأتها المستخدم في مجموعات ضخمة من المستندات. أساليب Readriever-Reverse Graph النهج هي أسران كبيرتان من الحلول لهذه المهمة. يطبق قارئ المسترد أولا تقنيات استرجاع المعلومات للحصول على تحديد عدد قليل من الممرات التي من المحتمل أن تكون ذات صلة، ثم تغذي النص المسترد إلى قارئ شبكة عصبي لاستخراج الإجابة. بدلا من ذلك، يمكن بناء الرسوم البيانية المعرفة واستفسارها للإجابة على أسئلة المستخدمين. نقترح خوارزمية مع تصميم رواية Reader-Reader - يختلف عن كل من العائلات. يستخدم Reader-Retriever أولا قارئ حاليا لقراءة الكائن وإنشاء مجموعات من جميع الأسئلة المجدية المرتبطة بإجاباتهم، ثم يستخدم المسترد عبر الإنترنت للاستجابة لاستعلامات المستخدم من خلال البحث في مساحات الأسئلة التي تم إنشاؤها مسبقا للحصول على إجابات أكثر احتمالا أن يطلب في الطريقة المحددة. ندمج مزيد من الجمع بين قارئ المسترجع واحد واسترجاع القارئين في نموذج هجين يسمى R6 لأفضل أداء. تبين تجارب مع مجموعة بيانات عامة واسعة النطاق أن R6 يحقق دقة حديثة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا