إن المشكلات، والمكونات غير المعجمية في الكلام، تلعب دورا حاسما في التفاعل البشري البشري.من الصعب التدريب على النماذج المصممة للاعتراف بالمعلومات المشكلية، وخاصة مشاعر الكلام والأسلوب، بسبب مجموعات البيانات المحدودة المسمى المتاحة.في هذا العمل، نقدم إطارا جديدا يمكن شبكة عصبية لتعلم استخراج السمات المعالجة من الكلام باستخدام البيانات غير المشروح للعاطفة.نقوم بتقييم فائدة المدينات المستفادة على مهام المصب في الاعتراف بالمشاعر والكشف عن أسلوب التحدث، مما يدل على تحسينات كبيرة على الميزات الصوتية السطحية وكذلك على المدينات المستخرجة من مناهج أخرى غير مخالفة.يتيح عملنا أنظمة المستقبل الاستفادة من النازع التضمين المستفاد كمكون منفصل قادر على تسليط الضوء على المكونات المعيارية في الكلام.
Paralinguistics, the non-lexical components of speech, play a crucial role in human-human interaction. Models designed to recognize paralinguistic information, particularly speech emotion and style, are difficult to train because of the limited labeled datasets available. In this work, we present a new framework that enables a neural network to learn to extract paralinguistic attributes from speech using data that are not annotated for emotion. We assess the utility of the learned embeddings on the downstream tasks of emotion recognition and speaking style detection, demonstrating significant improvements over surface acoustic features as well as over embeddings extracted from other unsupervised approaches. Our work enables future systems to leverage the learned embedding extractor as a separate component capable of highlighting the paralinguistic components of speech.
المراجع المستخدمة
https://aclanthology.org/
تتداول هذه الورقة عن عملية بناء أول أداة تحويل الدائرة إلى التبعية التركية. نقطة الانطلاق لهذا العمل هي دراسة سابقة التي تحولت فيها 10 آلاف من أشجار هيكل العبارة يدويا إلى تركية من Corpus الأصلي Penntreebank. ضمن نطاق هذا المشروع، تم تحويل هذه العبار
نقدم نهجا للتعلم اكتشاف سقالة لإدخال مفاهيم في دورة معالجة اللغة الطبيعية تهدف إلى طلاب علوم الكمبيوتر في مؤسسات الفنون الليبرالية.نحن نصف بعض أهداف هذا النهج، بالإضافة إلى تقديم طرق محددة أن أربعة من المهام التي تعتمد على اكتشافها تجمع بين مفاهيم مع
نحن نعتبر مشكلة تعلم إصلاح برامج ج خاطئة عن طريق تعلم المحاذاة المثلى مع البرامج الصحيحة. نظرا لأن الأساليب السابقة إصلاح خطأ واحد في السطر، فمن المحتمل أنه لا مفر منه لتكرار عملية التثبيت حتى لا تبقى أخطاء. في هذا العمل، نقترح إطارا تعليمي تسلسل تسل
بناء أنظمة NLP التي تخدم الجميع يتطلب محاسبة اختلافات اللهجة. ولكن اللهجات ليست كيانات متجانسة: بالأحرى، يتم التقاط الفروق بين اللهجات وداخلها من خلال وجود وغياب العشرات من ميزات اللهجة في الكلام والنص، مثل حذف كوبولا في إنه ∅ قيد التشغيل ". في هذه ا
مجرر أن نقدم نمذجة اللغة المنطوقة الإندنية، ومهمة تعلم الخصائص الصوتية واللغوية للغة من الصوت الخام (لا توجد نص، لا ملصقات)، ومجموعة من المقاييس لتقييم التمثيلات المستفادة تلقائيا على المستويات الصوتية واللغوية لكلا الترميزوالجيل.أنشأنا أنظمة أساسية