ترغب بنشر مسار تعليمي؟ اضغط هنا

مسودة الدلالية المجانية تقريبا للترجمة الآلية العصبية

Almost Free Semantic Draft for Neural Machine Translation

265   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمكن تحسين جودة الترجمة من خلال المعلومات العالمية من الجملة المستهدفة المطلوبة لأن وحدة فك الترميز يمكن أن تفهم كل من المعلومات السابقة والمستقبلية.ومع ذلك، يحتاج النموذج إلى تكلفة إضافية لإنتاج والنظر في هذه المعلومات العالمية.في هذا العمل، لحقن معلومات عالمية ولكن أيضا توفير التكلفة، نقدم طريقة فعالة للعينة والنظر في مشروع دلالي كمعلومات عالمية من الفضاء الدلالي ل فكيبها مع خالية من التكلفة تقريبا.على عكس التكيفات الناجحة الأخرى، لا يتعين علينا تنفيذ عملية تشبه ممن عينات مرارا وتكرارا من الفضاء الدلالي المحتمل.تظهر التجارب التجريبية أن الطريقة المقدمة يمكن أن تحقق أداء تنافسي في أزواج اللغة المشتركة مع ميزة واضحة في كفاءة الاستدلال.سنفتح جميع التعليمات البرمجية المصدر الخاصة بنا على Github.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يستخدم تكيف المجال على نطاق واسع في التطبيقات العملية للترجمة الآلية العصبية، والتي تهدف إلى تحقيق أداء جيد على كل من المجال العام والبيانات داخل المجال. ومع ذلك، فإن الأساليب الحالية لتكييف المجال عادة ما تعاني من النسيان الكارثي، والاختلاف المجال ا لكبير، والانفجار النموذجي. لمعالجة هذه المشكلات الثلاثة، نقترح طريقة للتقسيم والتغلب عليها "والتي تعتمد على أهمية الخلايا العصبية أو المعلمات لنموذج الترجمة. في هذه الطريقة، نقوم أولا بإزالة النموذج ويحافظ على الخلايا العصبية أو المعلمات المهمة فقط، مما يجعلها مسؤولة عن كل من المجال العام والترجمة داخل المجال. ثم علينا مزيد من تدريب النموذج المعاني الذي يشرف عليه النموذج الكامل الأصلي مع تقطير المعرفة. أخيرا، نوسع النموذج إلى الحجم الأصلي وضبط المعلمات المضافة للترجمة داخل المجال. أجرينا تجارب على أزواج ومجالات مختلفة للغة والنتائج تظهر أن طريقتنا يمكن أن تحقق تحسينات كبيرة مقارنة بالعديد من خطوط الأساس القوية.
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا لنسيان الكارثي الذي ينخفض ​​فيه الأداء الموجود على المجال العام بشكل كبير. في هذا العمل، نقترح إطارا تعليميا مستمرا جديدا لنماذج NMT. نحن نعتبر سيناريو حيث يتألف التدريب من مراحل متعددة واقتراح تقنية تقطير معارف ديناميكية لتخفيف مشكلة النسيان الكارثي بشكل منهجي. نجد أيضا أن التحيز موجود في الإسقاط الخطي الإخراج عند ضبط جيد على Corpus في المجال، واقترح وحدة تصحيح التحيز للقضاء على التحيز. نقوم بإجراء تجارب في ثلاثة إعدادات تمثيلية لتطبيق NMT. تظهر النتائج التجريبية أن الطريقة المقترحة تحقق أداء فائقا مقارنة بالنماذج الأساسية في جميع الإعدادات.
أسئلة البحث الحديثة أهمية الاهتمام الذاتي لمنتج المنتج في نماذج المحولات ويظهر أن معظم رؤساء الاهتمام تعلم أنماطا موضعية بسيطة. في هذه الورقة، ندفع أبعد من ذلك في خط البحث هذا واقتراح آلية بديلة جديدة عن النفس: الاهتمام المتكرر (ران). تتعلم RAN بشكل مباشر أوزان الاهتمام دون أي تفاعل رمزي إلى رمز ويحسن قدرتها على تفاعل الطبقة إلى الطبقة. عبر مجموعة واسعة من التجارب في 10 مهام ترجمة آلية، نجد أن نماذج RAN تنافسية وتفوق نظيرها المحول في بعض السيناريوهات، مع عدد أقل من المعلمات ووقت الاستدلال. خاصة، عند تطبيق ركض إلى فك ترميز المحولات، يجلب التحسينات المتسقة عن طريق حوالي +0.5 بلو في 6 مهام الترجمة و +1.0 Bleu على مهمة الترجمة التركية الإنجليزية. بالإضافة إلى ذلك، نجرينا تحليلا مكثفا بشأن أوزان الاهتمام في ركض لتأكيد المعقولية. ران لدينا هو بديل واعد لبناء نماذج NMT أكثر فعالية وكفاءة.
تعتمد معظم نماذج الترجمة الآلية العصبية الحالية ترتيب فك التشفير الرخيصي إما من اليسار إلى اليمين أو اليمين إلى اليسار.في هذا العمل، نقترح طريقة رواية تنفصل قيود أوامر فك التشفير هذه، تسمى فك تشفير الذكية.وبشكل أكثر تحديدا، تتوقع طريقةنا أولا كلمة مت وسط.يبدأ فك شفرة الكلمات الموجودة على الجانب الأيمن من الكلمة المتوسطة ثم يولد كلمات على اليسار.نحن نقيم طريقة فك التشفير الذكية المقترحة على ثلاث مجموعات البيانات.تظهر النتائج التجريبية أن الطريقة المقترحة يمكن أن تتفوق بشكل كبير على النماذج الأساسية القوية.
نقترح طريقة تكبير البيانات للترجمة الآلية العصبية.إنه يعمل عن طريق تفسير نماذج اللغة ومحاذاة الجمل الفعلية سببا.على وجه التحديد، فإنه يخلق كورس ترجمة موازية مزعجة عن طريق توليد عبارات محاذاة مضادة للمحاطة (المسار).نحن نولد هذه من خلال أخذ عينات من عب ارات مصدر جديدة من نموذج لغة ملثم، ثم أخذ عينات من عبارة مستهدفة محاذاة محاذاة من خلال الإشارة إلى أن نموذج لغة الترجمة يمكن تفسيره على أنه نموذج سببي هيكلي Gumbel-Max (Oberst و Sontag، 2019).مقارنة بالعمل السابق، تأخذ طريقتنا السياق ومحاذاة في الاعتبار للحفاظ على التماثل بين المصدر والتسلسلات المستهدفة.تجارب على iwslt'15 الإنجليزية → الفيتنامية، WMT'17 الإنجليزية → الألمانية، WMT'18 English → التركية، و WMT'19 قوية الإنجليزية → معرض الفرنسية أن الطريقة يمكن أن تحسن أداء الترجمة والخلفية والترجمة قوية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا