نقترح محدب (مستخرج قيمة المحادثة)، وهو نهج عصبي فعال وضبط ناعم لمهام مربع حوار وضع العلامات. بدلا من الاعتماد على أهداف محتملة أكثر عمليا من العمل السابق (مثل النمذجة، ونمذجة اللغة، واختيار الاستجابة)، فإن مهمة محدبة محدبة، وهي مهمة عبء الزوجية الزوجية باستخدام بيانات Reddit، تتماشى بشكل جيد مع استخدامها المقصود على مهام وضع التسلسل. وهذا يتيح تعلم معدلات الفتحات الخاصة بالمجال الخاصة بالمجال بمجرد ضبط طبقات فك تشفير طبقات تسلسل التسلسل العام للأغراض العامة، في حين يتم الاحتفاظ غالبية معلمات النموذج مسبقا المجمدة. نقوم بالإبلاغ عن أداء محدب الحديثة عبر مجموعة من المجالات المتنوعة ومجموعات البيانات لوضع علامات على فتحة الحوار، مع أكبر المكاسب في أكثر الإعدادات الصعبة والعديد من الرصاص. نعتقد أن أوقات محدبة المحدبة المختصرة (أي، فقط 18 ساعة على 12 GPUs) والتكلفة، إلى جانب ضبطها الدقيقة الفعالة وأدائها القوي، وعدت إمكانية النقل والأوسع نطاقا وتوسيع نطاق مهام وضع التسلسل الموفرة للبيانات بشكل عام.
We propose ConVEx (Conversational Value Extractor), an efficient pretraining and fine-tuning neural approach for slot-labeling dialog tasks. Instead of relying on more general pretraining objectives from prior work (e.g., language modeling, response selection), ConVEx's pretraining objective, a novel pairwise cloze task using Reddit data, is well aligned with its intended usage on sequence labeling tasks. This enables learning domain-specific slot labelers by simply fine-tuning decoding layers of the pretrained general-purpose sequence labeling model, while the majority of the pretrained model's parameters are kept frozen. We report state-of-the-art performance of ConVEx across a range of diverse domains and data sets for dialog slot-labeling, with the largest gains in the most challenging, few-shot setups. We believe that ConVEx's reduced pretraining times (i.e., only 18 hours on 12 GPUs) and cost, along with its efficient fine-tuning and strong performance, promise wider portability and scalability for data-efficient sequence-labeling tasks in general.
المراجع المستخدمة
https://aclanthology.org/
ينشأ التعلم القليل من الرصاص في سيناريوهات عملية مهمة، كما هو الحال عندما يحتاج نظام فهم اللغة الطبيعية إلى تعلم ملصقات دلالية جديدة للنشاط الناشئ والموارد النادر. في هذه الورقة، نستكشف الأساليب القائمة على استرجاع مهام تعبئة النوايا وملء الفتحات في
نستكشف عدد قليل من التعلم (FSL) لتصنيف العلاقة (RC).مع التركيز على السيناريو الواقعي من FSL، والتي قد لا تنتمي مثيل الاختبار إلى أي من الفئات المستهدفة (لا شيء أعلاه، [nota])، فإننا أولا إعادة النظر في هيكل مجموعة البيانات الشعبية الأخيرة ل FSL، مشير
تعد تصنيف النوايا (IC) وملء الفتحات (SF) لبنات بناء مهمة في أنظمة الحوار الموجهة نحو المهام. هذه المهامتين مرتبطان ارتباطا وثيقا ويمكن أن تزدهر بعضهما البعض. نظرا لأن عدد قليل فقط من الكلام، يمكن استخدامها لتحديد النوايا والفتحات الجديدة الناشئة، وغا
في حين أن Framenet تعتبر على نطاق واسع كمورد غني من الدلالات في معالجة اللغات الطبيعية، فإن النقد الرئيسي يتعلق بعدم وجود تغطية وندرة نسبية لبياناتها المسمدة مقارنة بالموارد المعمارية الأخرى المستخدمة مثل Propbank و Verbnet. تقارير الورقة هذه عن دراس
النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي