ترغب بنشر مسار تعليمي؟ اضغط هنا

على سبيل المثال - تنبؤ النية بالمراقبين

Example-Driven Intent Prediction with Observers

261   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

التحدي الرئيسي في أبحاث أنظمة الحوار هو التكيف بشكل فعال وكفاءة مع مجالات جديدة. يتطلب نموذجا قابل للتطوير للتكيف تطوير النماذج التعميمية التي تؤدي بشكل جيد في إعدادات قليلة. في هذه الورقة، نركز على مشكلة تصنيف النية التي تهدف إلى تحديد نوايا المستخدمين المعطاة الكلام الموجهة إلى نظام الحوار. نقترح اقترابين لتحسين تعميم نماذج تصنيف الكلام: (1) مراقبون و (2) تدريب على سبيل المثال لقد أظهر العمل السابق أن النماذج التي تشبه بيرت تميل إلى تنسيق مبلغ كبير من الاهتمام ل [CLS] الرمز المميز، والتي نفترض النتائج في تمثيلات مخففة. المراقبون هم الرموز التي لا تحضرها، وهي بديل من رمزية [CLS] كتمثيل دلالي للكلمات. يتعلم التدريب على سبيل المثال أن تصنف الكلام من خلال مقارنة بالأمثلة، وبالتالي استخدام التشفير الأساسي كنموذج تشابه الجملة. هذه الأساليب مكملة؛ إن تحسين التمثيل من خلال المراقبين يسمحون بالنموذج الذي يحركه المثال إلى تحسين أوجه تشابه الجملة. عند دمجها، فإن الأساليب المقترحة تحقق نتائج أحدث نتائج من ثلاث مجموعات من مجموعات بيانات التنبؤ النية (Banking77، CLINC150، HWU64) في كلا البيانات الكاملة وإعدادات قليلة (10 أمثلة لكل نية). علاوة على ذلك، نوضح أن النهج المقترح يمكن أن ينقل إلى النوايا الجديدة وعبر مجموعات البيانات دون أي تدريب إضافي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يعد الكشف عن النية مكونا رئيسيا في أنظمة الحوار الحديثة الموجهة نحو الأهداف التي تنجز مهمة مستخدم من خلال التنبؤ بمثابة إيداع نص المستخدمين. هناك ثلاثة تحديات أساسية في تصميم نماذج الكشف عن النية قوية ودقيقة. أولا، تتطلب نماذج الكشف عن النية النموذجي ة كمية كبيرة من البيانات المسمى لتحقيق دقة عالية. لسوء الحظ، في السيناريوهات العملية هو أكثر شيوعا للعثور على مجموعات بيانات صغيرة وغير متوازنة وصاخبة. ثانيا، حتى مع بيانات تدريب كبيرة، يمكن أن ترى نماذج الكشف عن النية توزيعا مختلفا لبيانات الاختبار عند نشرها في العالم الحقيقي، مما يؤدي إلى دقة سيئة. أخيرا، يجب أن يكون نموذج اكتشاف نوايا عمليا فعاليا في كل من التدريب واستنتاج الاستعلام الفردي بحيث يمكن استخدامه بشكل مستمر وإعادة تدريبه بشكل متكرر. نحن نؤيد أساليب الكشف عن النية في مجموعة متنوعة من مجموعات البيانات. تظهر نتائجنا أن نموذج الكشف عن نية مساعد Watson يفوق الحلول التجارية الأخرى ومقارنة مع نماذج اللغة المحددة مسبقا كبيرة مع حدوث جزء صغير فقط من الموارد الحسابية وبيانات التدريب. يدل مساعد واتسون درجة أعلى من المتانة عند تختلف توزيعات التدريب والاختبار.
من أجل تخفيف الطلب الكبير على مجموعات البيانات المشروح للمهام المختلفة، اعتمدت العديد من مجموعات بيانات معالجة اللغات الطبيعية الحديثة خطوط أنابيب آلية للبيانات القابلة للاستخدام السريع. ومع ذلك، فإن التدريب النموذجي مع مثل هذه البيانات يشكل تحديا لأ ن أهداف التحسين الشائعة ليست قوية لتسمية الضوضاء الناجمة عن عملية توليد التوضيحية. تم اقتراح العديد من الخسائر القوية للضوضاء وتقييمها في المهام في رؤية الكمبيوتر، لكنها تستخدم عموما فرط DataSet-WiseParamter واحد للتحكم في قوة مقاومة الضوضاء. يقترح هذا العمل أطر تدريبية جديدة على سبيل المثال لتغيير فرط بيانات DataSet واحد من مقاومة الضوضاء في مثل هذه الخسائر لتكون مثالا. توقع هؤلاء مثيل - Hyperparameters مقاومة للضوضاء من خلال تنبؤات ذات جودة عالية على مستوى التصنيف، والتي يتم تدريبها مع نماذج التصنيف الرئيسية. تظهر تجارب مجموعات بيانات NLP الصاخبة والفساد أن أطر التدريب على سبيل المثال المقترحة على سبيل المثال تساعد في زيادة متانة الضوضاء التي توفرها هذه الخسائر، وتعزيز استخدام الأطر والأطر الخسائر المرتبطة بها في نماذج NLP المدربة مع بيانات صاخبة.
اقترح مخطط التعلم الخاص Texthide مؤخرا لحماية البيانات النصية الخاصة أثناء مرحلة التدريب عبر ترميز المثيل المزعوم.نقترح هجوم إعادة الإعمار الجديد لكسر Texthide من خلال استعادة بيانات التدريب الخاص، وبالتالي تكشف النقاب عن مخاطر الخصوصية على ترميز الم ثيل.لقد صادقنا تجريبيا فعالية هجوم إعادة الإعمار مع مجموعات بيانات شائعة الاستخدام لتصنيف الجملة.إن هجومنا ستقدم تطوير التعلم في الحفاظ على الخصوصية في سياق معالجة اللغة الطبيعية.
أصبحت الرسوم البيانية المعرفة (KGS) شعبية بشكل متزايد في السنوات الأخيرة. ومع ذلك، نظرا لأن المعرفة تنمو باستمرار وتغييرات، فمن المحتم أن تمتد KGS الموجودة مع الكيانات التي ظهرت أو أنها ذات صلة بنطاق كجم بعد إنشائها. تعتمد البحث في تحديث KGS عادة على استخراج الكيانات المسماة والعلاقات من النص. ومع ذلك، لا يمكن لهذه الأساليب استنتاج كيانات أو علاقات غير مذكورة صراحة. بدلا من ذلك، استغلال نماذج التضمين الانتظار الهيكلية الضمنية للتنبؤ بالعلاقات المفقودة، ولكن لا يمكن التنبؤ بالكيانات المفقودة. في هذه المقالة، نقدم طريقة جديدة لإثراء KG مع كيانات جديدة بالنظر إلى وصفها النصي. لدينا طريقة ترفع نماذج تضمين مشتركة، وبالتالي لا تتطلب كيانات أو علاقات يمكن تسميتها صراحة. نظرا لأن نهجنا يمكن أن تحدد مفاهيم جديدة في كوربوس وثيقة ونقلها إلى كجم، ونجد أن أداء طريقتنا يحسن بشكل كبير عند تمديده مع تقنيات من تعدين حكم الرابطة، والتعدين النصي، والتعلم النشط.
نقدم دراسة منهجية حول الكشف عن النية متعددة اللغات والتبلغة من البيانات المنطوقة.تنفد الدراسة على أن مورد جديد تم طرحه في هذا العمل، الذي يطلق عليه عقول -14، وهو موارد تدريب وتقييم أول مهمة معرف مع البيانات المنطوقة.ويغطي 14 حداثة مستخرجة من نظام تجا ري في مجال الخدمات المصرفية الإلكترونية، المرتبطة بالأمثلة المنطوقة في 14 نوعا متنوعا باللغة.تشير نتائجنا الرئيسية إلى أن الجمع بين نماذج الترجمة الآلية مع وجود ترميز جملة متعددة اللغات الحديثة (على سبيل المثال، LASSE) تسفر عن كاشفات نية قوية في غالبية اللغات المستهدفة المشمولة في العقول -14، وتقديم تحليلات مقارنة عبر محاور مختلفة: على سبيل المثال، اتجاه الترجمة، تأثير التعرف على الكلام، تكبير البيانات من مجال ذي صلة.نرى هذا العمل كخطوة مهمة نحو تطوير وتقييم أكثر شمولية لمعرف متعدد اللغات من البيانات المنطوقة، ونأمل في طيف أوسع بكثير من اللغات مقارنة بالعمل السابق.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا