تلخيص التعليمات البرمجية والجيل التمدد التحويل بين لغة البرمجة (PL) واللغة الطبيعية (NL)، بينما تتفافر ترجمة التعليمات البرمجية ترحيل الرمز القديم من واحد إلى آخر. تقدم هذه الورقة Plbart، نموذج تسلسل إلى تسلسل قادر على أداء مجموعة واسعة من فهم البرامج واللغة ومهام الجيل. يتم تدريب PLBART مسبقا على مجموعة واسعة من وظائف Java و Python والنص NL المرتبط NL عبر Denoising AutoNCoding. تجارب في تلخيص التعليمات البرمجية في اللغة الإنجليزية وتوليد التعليمات البرمجية، وترجمة التعليمات البرمجية في سبع لغات البرمجة تظهر أن PLBART تفوق النماذج أو من المنافسين من النماذج الحديثة. علاوة على ذلك، فإن التجارب المعنية بالمهام التمييزية، على سبيل المثال، إصلاح البرامج، وكشف استنساخ، وكشف الشفرة الضعيفة، إظهار فعالية PLBART في فهم البرنامج. علاوة على ذلك، يكشف التحليل أن Plbart يتعلم بناء جملة البرنامج، والأسلوب (على سبيل المثال، اتفاقية تسمية المعرف)، التدفق المنطقي (على سبيل المثال، إذا كانت كتلة داخل كتلة أخرى تعادل أخرى إذا كانت الكتلة) ذات أهمية حاسمة في البرامج، وبالتالي تتفوق حتى مع التعليقات التوضيحية المحدودة وبعد
Code summarization and generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART's effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., if block inside an else block is equivalent to else if block) that are crucial to program semantics and thus excels even with limited annotations.
المراجع المستخدمة
https://aclanthology.org/
مكنت التقدم في تمثيل اللغة الإنجليزية مهمة أكثر كفاءة عينة من خلال التعلم بكفاءة ترميز يصنف بدائل الرمز المميز بدقة (Electra).أي، بدلا من تدريب نموذج لاستعادة الرموز الممثيلين، يقوم بتدريب نموذج تمييزي على التمييز بين الرموز الإدخال الحقيقية من الرمو
نقدم VideoClip، وهو نهج مقاوم للتناقض في تدريب نموذج موحد مسبقا لفهم الفيديو والنصية الصفرية، دون استخدام أي ملصقات على مهام المصب.يقوم VideoClep بتدريب محول الفيديو والنص عن طريق تناقض أزواج فيديو إيجابية مؤقتة متداخلة مع السلبيات الصعبة من أقرب است
تسهل المعلومات اللغوية الخشنة، مثل الكيانات أو العبارات المسماة، التعلم التمثيل بشكل كاف في التدريب المسبق. تعمل السابقة بشكل أساسي على توسيع هدف نمذجة لغة بيرت الملثمين (MLM) من إخفاء الرموز الفردية إلى تسلسلات متجاورة من الرموز N. نقول أن هذه الطري
أصبحت نماذج لغة المحولات المدربة مسبقا (LM) لتشفيات تمثيل النص.البحث المسبق يلتزم LMS عميق لتشفير تسلسل النص مثل الجمل والمرورات في تمثيلات ناقلات كثيفة واحدة لمقارنة النص وانتبعدة فعالة.ومع ذلك، تتطلب التشفير الكثيفة الكثير من البيانات والتقنيات الم
تظهر الأبحاث الحديثة أن النماذج المدربة مسبقا (PTMS) مفيدة تجزئة الكلمات الصينية (CWS).ومع ذلك، فإن PTMS المستخدمة في الأعمال السابقة عادة ما تعتمد نمذجة اللغة كامرأة تدريبية مسبقا، تفتقر إلى معرفة تجزئة مسبقة خاصة بمهام المهام وتجاهل التناقض بين مها