ترغب بنشر مسار تعليمي؟ اضغط هنا

كل شيء له سبب: الاستفادة من الاستدلال السببية في تحليل النص القانوني

Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis

308   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

الاستدلال السببية هو عملية التقاط علاقة تأثير السبب بين المتغيرات.تركز معظم الأعمال الموجودة على التعامل مع البيانات المنظمة، أثناء التعدين العلاقة السببية بين عوامل البيانات غير المنظمة، مثل النص، أقل فحصا، ولكنها ذات أهمية كبيرة، خاصة في المجال القانوني.في هذه الورقة، نقترح إطار الاستدلال السببية المستندة إلى الرسم البياني (GCI) على الرواية، والذي يبني الرسوم البيانية السببية من أوصاف الحقائق دون تورط إنساني كبير ويمكن الاستدلال السببية لتسهيل الممارسين القانونيين لإجراء قرارات مناسبة.نقيم الإطار على مهمة تحدي مهمة غموض مماثلة.تظهر النتائج التجريبية أن GCI يمكن أن تلتقط نفاد الفقراء من أوصاف الحقائق بين رسوم مربكة متعددة وتوفير تمييز قابل للتفسير، وخاصة في إعدادات قليلة.نلاحظ أيضا أن المعرفة السببية الواردة في GCI يمكن حقنها بشكل فعال في شبكات عصبية قوية لتحسين الأداء والتفسيرية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

أثبتت نماذج اللغة أنها مفيدة للغاية عند تكييفها مع مجالات محددة.ومع ذلك، تم إجراء القليل من الأبحاث على تكيف نماذج بيرت الخاصة بالمجال في اللغة الفرنسية.في هذه الورقة، نركز على إنشاء نموذج لغة تتكيف مع النص القانوني الفرنسي بهدف مساعدة محترفي القانون .نستنتج أن بعض المهام المحددة لا تستفيد من نماذج اللغة العامة المدربة مسبقا على كميات كبيرة من البيانات.نستكشف استخدام الهندسة الصغيرة في اللغات الفرعية الخاصة بالمجال ومزاياها للنص القانوني الفرنسي.نثبت أن النماذج المحددة مسبقا للمجال يمكن أن تؤدي أفضل من تلك المعادلة المكافئة في المجال القانوني.أخيرا، نطلق سراح جوريبارت، مجموعة جديدة من نماذج بيرت تتكيف مع المجال القانوني الفرنسي.
تعلم تمثيل كامن جيد ضروري لنقل نمط النص، والذي يولد جملة جديدة عن طريق تغيير سمات جملة معينة مع الحفاظ على محتواها.تعتمد معظم الأعمال السابقة تمثيل تمثيل كامن Disentangled تعلم تحقيق نقل النمط.نقترح خوارزمية نقل نمط النص الجديد مع تمثيل كامن متشابكا، وإدخال مصنف نمط يمكن أن ينظم الهيكل الكامن ونقل النقل.علاوة على ذلك، تنطبق خوارزمية لنقل النمط على كل من سمة واحدة ونقل السمة المتعددة.تظهر النتائج التجريبية الواسعة أن طريقتنا تتفوق بشكل عام على النهج الحديثة.
نماذج اللغة واسعة النطاق مثل GPT-3 هي متعلمين بقلة قليلة، مما يتيح لهم السيطرة عليها عبر مطالبات النص الطبيعي. أبلغ الدراسات الحديثة أن التصنيف المباشر الفوري يزيل الحاجة إلى ضبط الدقيقة ولكن يفتقر إلى إمكانية التوسع للبيانات والاستدلال. تقترح هذه ال ورقة تقنية تكبير بيانات جديدة ترفع نماذج لغة واسعة النطاق لتوليد عينات نصية واقعية من مزيج من العينات الحقيقية. نقترح أيضا استخدام الملصقات الناعمة المتوقعة من النماذج اللغوية، وتقطير المعرفة بفعالية من نماذج اللغة واسعة النطاق وإنشاء اضطرابات نصية في وقت واحد. نقوم بإجراء تجارب تكبير البيانات على مهام التصنيف المتنوعة وإظهار أن طريقتنا تتفوق بشكل كبير على أساليب تكبير النص الحالية. نقوم أيضا بإجراء تجارب في معيارنا المقترح حديثا لإظهار أن تأثير تكبير لا يعزى فقط إلى الحفظ. مزيد من دراسات الاجتثاث والتحليل النوعي توفر المزيد من الأفكار في نهجنا.
يصف استخراج المعلومات عبر اللغات الصفرية (IE) بناء نموذج IE لبعض اللغة المستهدفة، بالنظر إلى التعليقات التوضيحية القائمة حصريا في لغة أخرى، عادة باللغة الإنجليزية. في حين أن تقدم اللوائح المتعددة اللغات المحددة مسبقا يشير إلى تفاؤل سهلة للقطار على ال لغة الإنجليزية، وتشغيل أي لغة ""، نجد من خلال استكشاف شامل وتمديد التقنيات التي تقودها مجموعة من الأساليب، الجديدة القديمة، إلى أداء أفضل من أي استراتيجية واحدة عبر اللغات على وجه الخصوص. نستكشف التقنيات بما في ذلك إسقاط البيانات والتدريب الذاتي، وكيف تأثير المشفرات المختلفة مسبقا تأثيرها. نستخدم English-to-businal IE مثلي الأولي، مما يدل على أداء قوي في هذا الإعداد لاستخراج الأحداث، والتعرف على الكيان المسمى، ووضع علامات جزء من الكلام، وتحليل التبعية. ثم قم بتطبيق إسقاط البيانات والتدريب الذاتي على ثلاثة مهام عبر ثمانية لغات مستهدفة. نظرا لعدم وجود مجموعة واحدة من التقنيات الأفضل عبر جميع المهام، فإننا نشجع الممارسين على استكشاف تكوينات مختلفة للتقنيات الموضحة في هذا العمل عند السعي لتحسين التدريب على الصفر.
إن تطبيق تقنيات الترميز التنبؤية للنصوص القانونية لديه القدرة على تقليل تكلفة المراجعة القانونية للوثائق، ومع ذلك، هناك مثل هذه المجموعة الواسعة من المهام القانونية والتشريعات المتطورة باستمرار من الصعب بناء بيانات تدريبية كافية لتغطية جميعهاحالات.في هذه الورقة، نقوم بالتحقيق في طرق قليلة من الأساطير والرصاص التي تتطلب بيانات تدريب أقل بكثير وإدخال هندسة ثلاثية، والتي تنتج البيانات الإذنية أداء قريبة من نظام نظام إشرافي.تسمح هذه الطريقة بطرق ترميز التنبؤ أن يتم تطويرها بسرعة للوائح والأسواق الجديدة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا