وجدت خوارزميات التدرج السياسي اعتماد واسع في NLP، لكنها أصبحت مؤخرا عرضة للنقد، مما يشك في ملاءمتها ل NMT.تشوشين وآخرون.(2020) حدد نقاط ضعف متعددة والشك في تحديد نجاحهم من خلال شكل توزيعات الإخراج بدلا من المكافأة.في هذه الورقة، نلتأكيد هذه المطالبات ودراسةها تحت مجموعة أوسع من التكوينات.تكشف تجاربنا على التكيف في المجال والمجال عبر المجال أهمية الاستكشاف والمكافآت، وتوفير الأدلة المضادة التجريبية لهذه المطالبات.
Policy gradient algorithms have found wide adoption in NLP, but have recently become subject to criticism, doubting their suitability for NMT. Choshen et al. (2020) identify multiple weaknesses and suspect that their success is determined by the shape of output distributions rather than the reward. In this paper, we revisit these claims and study them under a wider range of configurations. Our experiments on in-domain and cross-domain adaptation reveal the importance of exploration and reward scaling, and provide empirical counter-evidence to these claims.
المراجع المستخدمة
https://aclanthology.org/
حققت الترجمة الآلية العصبية غير التلقائية، التي تتحلل الاعتماد على الرموز المستهدفة السابقة من مدخلات وحدة فك التشفير، تسريع استنتاج مثير للإعجاب ولكن بتكلفة الدقة السفلى. Works السابق توظف فك تشفير تكريري لتحسين الترجمة عن طريق تطبيق تكرارات تحسين م
تتطلب أساليب التعلم المنهج الحالية للترجمة الآلية العصبية (NMT) أخذ العينات مبالغ كافية من العينات "من بيانات التدريب في مرحلة التدريب المبكر. هذا غير قابل للتحقيق دائما لغات الموارد المنخفضة حيث تكون كمية البيانات التدريبية محدودة. لمعالجة مثل هذا ا
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد
عند بناء أنظمة الترجمة الآلات، يحتاج المرء في كثير من الأحيان إلى الاستفادة القصوى من مجموعات غير متجانسة من البيانات الموازية في التدريب، والتعامل مع المدخلات بقوة من المجالات غير المتوقعة في الاختبار.جذبت هذا السيناريو متعدد المجالات الكثير من العم
الترجمة التنبؤية التفاعلية هي عملية تكرارية تعاونية وحيث تنتج مترجمات البشر الترجمات بمساعدة أنظمة الترجمة الآلية (MT) بشكل تفاعلي. توجد تقنيات أخذ العينات المختلفة في التعلم النشط (AL) لتحديث نموذج MT (NMT) العصبي في السيناريو التفاعلي التنبؤ بالتنب