ترغب بنشر مسار تعليمي؟ اضغط هنا

تقييم تأثير تمثيل الخطاب التسلسل الهرمي حول أداء دقة كائن كوراسة

Evaluating the Impact of a Hierarchical Discourse Representation on Entity Coreference Resolution Performance

470   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يعمل العمل الحديث على قرار كائن كائن (CR) على اتجاه الاتجاهات الحالية في التعلم العميق المطبق على المدينات والميزات ذات الصلة بسيطة نسبيا.لا تستخدم نماذج Sota تمثيلات هرمية بنية الخطاب.في هذا العمل، نستفيد تلقائيا التي تم بناؤها تلقائيا تحليل الأشجار في نهج عصبي وإظهار تحسن كبير في مجموعات عمليتين من كائن كوريا القياسي.نستكشف كيف يختلف التأثير اعتمادا على نوع الإشارة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقدم نهج عصبي نهاية إلى نهج لإنشاء جمل إنجليزية من تمثيلات المعنى الرسمي، وهياكل تمثيل الخطاب (DRSS).نستخدم نموذج تسلسل ثنائي التسلسل BI-LSTM القياسي بدلا من ذلك، والعمل بتمثيل إدخال DRS SNEARIZED، وتقييم رقائق الرقص على مستوى الأحرف ومستوى الكلمات.ن حصل على نتائج مشجعة للغاية فيما يتعلق بالمقاييس التلقائية المستندة إلى المرجعية مثل بلو.ولكن نظرا لأن هذا المقاييس يقوم فقط بتقييم مستوى السطح من الإخراج الناتج، فإننا نطور متريا جديدا، وارتفعت، والتي تستهدف الظواهر الدلالية المحددة.نحن نقوم بذلك مع خمسة مجموعات تحدي جيل DRS التركيز على العدد القطبي والقطبية والكمييات المسماة.الهدف من مجموعات التحدي هذه هو تقييم تنظيمي المولد العصبي وتعميم المدخلات غير المرئية.
نقترح النماذج العصبية لتوليد نص من تمثيلات معناية رسمية بناء على هياكل تمثيل الخطاب (DRSS).DRSS هي تمثيلات على مستوى المستند والتي تشفص بالتفاصيل الدلالية الغنية المتعلقة بالعلاقات الخطابية، والافتراض، والتعايش التعاوني داخل وعبر الجمل.نقوم بإضفاء ال طابع الرسمي على مهمة الجيل العصبي DRS إلى النص وتوفير حلول النمذجة لمشاكل طلب الشرط وتسمية التسمية المتغيرة التي تجعل الجيل من DRSS غير تافهة.يعتمد مولدنا على نموذج Treelstm الرواية القادرة على تمثيل هياكل DRS بدقة وهو مناسب بشكل عام للأشجار ذات فروع واسعة.نحقق أداء تنافسي (59.48 بلو) على معيار GMB ضد العديد من خطوط الأساس القوية.
نهج تحديد استعارة الحديثة النظر أساسا في ميزات النص السياقية في غضون جملة أو إدخال ميزات لغوية خارجية إلى النموذج. لكنهم عادة ما يتجاهلون المعلومات الإضافية التي يمكن أن توفرها البيانات، مثل معلومات الاستعارة السياقية ومعلومات الخطاب الأوسع نطاقا. في هذه الورقة، نقترح نموذجا تم تزويده بتمثيل سياقي هرمي لاستخراج مزيد من المعلومات من كل من مستوى الجملة ومستوى الخطاب. على مستوى الجملة، نستفيد من معلومات الاستعارة من الكلمات التي تبادل الكلمة المستهدفة في الجملة لتعزيز قدرة المنطق على نموذجنا عبر تمثيل محسن محسن على الملصقات. عند مستوى الخطاب، يتم اعتماد شبكة الذاكرة العالمية التي تدركها لتعلم التبعية بعيدة المدى بين نفس الكلمات داخل خطاب. أخيرا، يجمع نموذجنا بين التمثيلات التي تم الحصول عليها من هذين الجزأين. تظهر نتائج التجربة على مهمتين لمجموعة بيانات VUA أن طرازنا يتفوق على كل طريقة أخرى لا تستخدم أي معرفة خارجية أيضا باستثناء ما يحتوي نموذج اللغة المدربة مسبقا عليه.
الكيانات المتعلقة بالأحداث والأحداث في النص هي مكون رئيسي لفهم اللغة الطبيعية.دقة Coreference Coreference، على وجه الخصوص، أمر مهم بالنسبة للمصلحة المتزايدة بمهام تحليل المستندات متعددة الوثائق.في هذا العمل، نقترح نموذجا جديدا يمتد نموذج التنبؤ المتس لسل الفعال لتحليل Corefery لإعدادات تبادل المستندات وتحقق نتائج تنافسية لكلا كلا كلا كائن الكيان والحدث مع توفير أدلة قوية على فعالية كل من النماذج المتسلسلة والاستدلال المرتفعإعدادات الوثيقة عبر المستندات.يتطلب نموذجنا بشكل تدريجي يذكر في تمثيل الكتلة ويتوقع الروابط بين الإشارة والمجموعات التي تم إنشاؤها بالفعل، تقريب نموذج أعلى للترتيب.بالإضافة إلى ذلك، نقوم بإجراء دراسات بديلة الأزمة التي توفر رؤى جديدة في أهمية مختلف المدخلات وأنواع التمثيل في Courceer.
نقترح طريقة لتعلم تمثيلات الجملة المعممة والتعميم باستخدام التعلم المشروع للإشراف على الذات.في الطريقة المقترحة، يتم إعطاء نموذج نص يتكون من جمل متعددة.تم اختيار جملة واحدة بشكل عشوائي كجوزة مستهدفة.يتم تدريب النموذج على زيادة التشابه بين تمثيل الجمل ة المستهدفة مع سياقها وذلك من الجملة المستهدفة الملثملة بنفس السياق.في الوقت نفسه، يقلل النموذج من التشابه بين التمثيل الأخير وتمثيل جملة عشوائية مع نفس السياق.نحن نطبق طريقنا لتحليل علاقة الخطاب باللغة الإنجليزية واليابانية وإظهار أنه يتفوق على أساليب خطية قوية على أساس Bert و Xlnet و Roberta.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا