ترغب بنشر مسار تعليمي؟ اضغط هنا

نمذجة اللغة العصبية لتوليد الرسم البياني الفني

Neural Language Modeling for Contextualized Temporal Graph Generation

327   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة أول دراسة حول استخدام نماذج اللغة المدربة مسبقا على نطاق واسع للجيل الآلي من الرسم البياني الصخم على مستوى الحدث للحصول على مستند. على الرغم من النجاح الهائل لأساليب ما قبل التدريب العصبي في مهام NLP، لم يتم استكشاف إمكاناتها للمنطق الزمني على الرسوم البيانية في الأحداث بما فيه الكفاية. جزء من السبب هو صعوبة في الحصول على شركة تدريبية كبيرة مع أحداث مشروح بين الإنسان والروابط الزمنية. نحن نتطلع إلى هذا التحدي باستخدام أدوات IE / NLP الحالية لتوليد كمية كبيرة تلقائيا (89،000) من أزواج المستند المستندات المنتجة للنظام، واقتراح صياغة رواية لمشكلة جيل الرسم البياني للسياق كقوة تعيين تسلسل إلى تسلسل. تمكننا هذه الاستراتيجيات من الاستفادة من النماذج اللغوية التي تم تدريبها مسبقا على بيانات التدريب التي يسببها النظام المهمة لتوليد الرسم البياني. تظهر تجاربنا أن نهجنا فعال للغاية في توليد رسوم بيانية صحيحة هيكليا وذات رأسيا. علاوة على ذلك، يوضح التقييم على Corpus تحديا يدويا عن طريق اليد، أن أسلوبنا تتفوق على أقرب طريقة موجودة من خلال هامش كبير على عدة مقاييس. نعرض أيضا تطبيقا نهرما لنهجنا من خلال تكييفه للإجابة على الأسئلة الزمنية المفتوحة في إعداد فهم القراءة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

التواصل البشري متعدد الوسائط في الطبيعة؛ من خلال طرائق متعددة مثل تعبيرات اللغة والصوت والوجه، يتم التعبير عن الآراء والعواطف. تظهر البيانات في هذا المجال التفاعلات المعقدة متعددة العلاقات والزمنية. التعلم من هذه البيانات هو مشكلة بحثية تحديا أساسيا. في هذه الورقة، نقترح الرسم البياني الاهتمام الأزمني (MTAG). MTAG هو نموذج عصبي مقاوم للرسمية يوفر إطارا مناسبا لتحليل البيانات المتسلسلة متعددة الوسائط. نقدم أولا إجراءات لتحويل بيانات التسلسل غير المعقدة متعددة الوسائط إلى رسم بياني مع العقد والحواف غير المتجانسة التي تلتقط التفاعلات الغنية عبر الطرائق وعبر الوقت. ثم، تم تصميم عملية رسم بياني رواية، تسمى MTAG FOUSION، إلى جانب تقنية تشذيب ديناميكية وقراءة، لمعالجة الرسوم البيانية الوظيفة الزمنية هذه بكفاءة والتقاط التفاعلات المختلفة. من خلال تعلم التركيز فقط على التفاعلات المهمة داخل الرسم البياني، تحقق MTAG أداء حديثة على تحليل المعنويات متعددة الوسائط ومعايير التعرف على العاطفة، مع الاستفادة من المعلمات النموذجية أقل بكثير.
تهدف المنطق الرياضي إلى استنتاج الحلول الراضية بناء على أسئلة الرياضيات المعينة. أثبتت أبحاث معالجة اللغة الطبيعية السابقة فعالية التسلسل إلى التسلسل (SEQ2SEQ) أو المتغيرات ذات الصلة على حل الرياضيات. ومع ذلك، تمكن عدد قليل من الأعمال من استكشاف المع لومات الهيكلية أو النحوية المخفية في التعبيرات (على سبيل المثال، الأسبقية والزملاء). وضعت هذه الرسالة للتحقيق في فائدة مثل هذه المعلومات غير المستغلة للهندسة العصبية. أولا، يتم تمثيل الأسئلة الرياضية بتنسيق الرسوم البيانية داخل تحليل بناء الجملة. تتيح لهم الطبيعة المنظمة للرسوم البيانية أن تمثل علاقات المتغيرات أو المشغلين مع الحفاظ على دلالات التعبيرات. بعد أن تحولت إلى التمثيلات الجديدة، اقترحنا Graphmr الشبكة العصبية الرسمية الرسمية، والتي يمكن أن تتعلم بفعالية المعلومات الهرمية من مدخلات الرسوم البيانية لحل الرياضيات وتوقع الإجابات. يتم بناء سيناريو تجريبي كامل مع أربع فئات من المهام الرياضية وثلاثة خطوط خطوط خطوط خطوط SEQ2SEQ لإجراء تحليل شامل، وتظهر النتائج أن Graphmr تفوقت على الآخرين في التعلم والمعلومات المخفية والحل الرياضيات.
جذب إنشاء نص طويل مشروط وفقا لنص الإدخال القصير مؤخرا المزيد والمزيد من جهود البحثية. تركز معظم الأساليب الموجودة على إدخال معرفة إضافية لاستكمال نص الإدخال القصير، ولكن تجاهل مسألة الاتساق من النصوص التي تم إنشاؤها. لمعالجة مشكلة البحث المذكورة أعلا ه، تقترح هذه الورقة نهجا جديدا على مرحلتين لتوليد نص طويل متماسك. خاصة، نقوم أولا ببناء مسار مستوى المستند لكل نص إخراج مع كل جملة تضمين عقدة، ويقترح خريطة تنظيم ذاتية المنقحة (SOM) عن العقد مماثلة لعائلة من مسارات مستوى المستندات لبناء الموجهة الرسم البياني الدلالي. بعد ذلك، يقترح ثلاث طرق محاذاة منصرا فوقها لاستخراج الحد الأقصى لمسارات المطابقة أو الأخبار. تعتبر هذه المجموعة الدراسية الموجهة التي يتم توجيهها بشكل جيد محتوى إضافي ولكنه ذي صلة بنص المدخلات القصيرة، ثم يتم فك تشفيره بواسطة النموذج المستخدم المدرب مسبقا لتوليد نص طويل متماسك. تم إجراء تجارب واسعة على ثلاث مجموعات بيانات حقيقية، وتظهرت النتائج الواعدة أن النهج المقترح متفوقا على النهج التي من بين الفنون. عدد من معايير التقييم.
مع الانفراج الأخير لتكنولوجيات التعلم العميق، اجتذبت البحث عن الفهم في قراءة الآلة (MRC) اهتماما كبيرا ووجدت تطبيقاتها متعددة الاستخدامات في العديد من حالات الاستخدام. MRC هي مهمة مهمة لمعالجة اللغة الطبيعية (NLP) تهدف إلى تقييم قدرة الجهاز لفهم تعبي رات اللغة الطبيعية، والتي يتم تشغيلها عادة عن طريق طرح الأسئلة أولا بناء على فقرة نصية معينة ثم تلقي الإجابات التي تم إنشاؤها بواسطة الجهاز وفقا ل إعطاء الفقرة والأسئلة السياق. في هذه الورقة، نستفيد نماذج لغة رواية روبيتين تم بناؤها على رأس تمثيلات التشفير الثنائية من المحولات (بيرت)، وهي بيرت WWM و Macbert، لتطوير أساليب MRC الفعالة. بالإضافة إلى ذلك، نسعى أيضا إلى التحقيق في ما إذا كان قد يستفيد التأسيس الإضافي للمعلومات الفئوية حول فقرة السياق MRC أم لا، والتي تحققت، على أساس تجميع الفقرة السياق على مجموعة بيانات التدريب. من ناحية أخرى، يقترح نهج التعلم الفرعي تسخير القوة التآزرية للنماذج التي تعتمد على برت المذكور أعلاه من أجل زيادة تعزيز أداء MRC.
يعمل العمل المسبق على جيل البيانات إلى النص، ومهمة تحويل الكلام الرسم البياني (KG) ثلاث مرات إلى نص طبيعي، يركز على مجموعات البيانات القياسية الخاصة بالمجال. ومع ذلك، في هذه الورقة، فإننا ننفذنا اللغة الإنجليزية بأكملها Wikidata KG، ومناقشة التحديات الفريدة المرتبطة بمجال واسع ومجموع واسع النطاق. نوضح كذلك بأنه لفظي كجم شامل ومكون من كجم مثل Wikidata يمكن استخدامه لدمج KGS الهيكلية واللغات الطبيعية. على عكس العديد من البنيات التي تم تطويرها لدمج هاتين المصدرين، فإن نهجنا يحول كجم إلى نص طبيعي، مما يسمح له بالدمج بسلاسة في نماذج اللغة الحالية. إنه يحمل مزايا أخرى لتحسين الدقة الواقعية وتقليل السمية في نموذج اللغة الناتج. نقوم بتقييم هذا النهج عن طريق زيادة عملية استرجاع النموذج لغوي استرجاع وإظهار تحسينات كبيرة على مهام المعرفة المكثفة في المجال المفتوح وكثير المعرفة LAMA.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا