غالبا ما تظهر اللغة الطبيعية هيكل هرمي متأصل متأرجلا مع بناء جملة معقدة ودليل. ومع ذلك، تعلم معظم النماذج الإدارية العميقة في أحدث تضمينها فقط في مساحة ناقلات Euclidean، دون محاسبة هذه الملكية الهيكلية للغة. في هذه الورقة، نحقق في جيل النص في مساحة كامنة ضئيلة لتعلم التمثيلات الهرمية المستمرة. يتم تقديم AutoNECODER AUTONICODER AUTONCODER (APO-VAE)، حيث يتم تعريف كل من الخلفية السابقة والتنتهي من المتغيرات الكامنة عبر كرة شاذة عبر التوزيعات العادية ملفوفة. من خلال اعتماد الصيغة البدائية المزدوجة لمخلاص Kullback-Leibler، يتم تقديم إجراء تعلم الخصم لتمكين التدريب النموذجي القوي. توضح تجارب واسعة النمذجة في النمذجة اللغوية ونقل النمط غير المعقول وتوليد استجابة الحوار فعالية نموذج APO-VAE المقترح على VAES في الفضاء الكامن Euclidean، وذلك بفضل قدراته الرائعة في التقاط التسلسلات الهرمية للغة الكامنة في الفضاء القطعي.
Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of Kullback-Leibler divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling, unaligned style transfer, and dialog-response generation demonstrate the effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.
المراجع المستخدمة
https://aclanthology.org/
نقترح النماذج العصبية لتوليد نص من تمثيلات معناية رسمية بناء على هياكل تمثيل الخطاب (DRSS).DRSS هي تمثيلات على مستوى المستند والتي تشفص بالتفاصيل الدلالية الغنية المتعلقة بالعلاقات الخطابية، والافتراض، والتعايش التعاوني داخل وعبر الجمل.نقوم بإضفاء ال
نقدم نهج عصبي نهاية إلى نهج لإنشاء جمل إنجليزية من تمثيلات المعنى الرسمي، وهياكل تمثيل الخطاب (DRSS).نستخدم نموذج تسلسل ثنائي التسلسل BI-LSTM القياسي بدلا من ذلك، والعمل بتمثيل إدخال DRS SNEARIZED، وتقييم رقائق الرقص على مستوى الأحرف ومستوى الكلمات.ن
أدت النجاحات الأخيرة في النمذجة التوليدية العميقة إلى تقدم كبير في توليد اللغة الطبيعية (NLG).أظهرت دمج الكيانات في نماذج الجيل العصبي تحسينات كبيرة من خلال المساعدة في استنتاج الموضوع الموجز وإنشاء محتوى متماسك.لتعزيز دور الكيان في NLG، في هذه الورق
الجيل القليل من طاولة النصوص إلى النص هو مهمة تأليف الجمل الطلالية والمخمة لنقل محتوى الجدول باستخدام بيانات محدودة. على الرغم من الجهود التي بذلت العديد من الجهود نحو توليد جمل بطلاقة مثيرة للإعجاب من خلال ضبط طرازات لغة قوية مدربة مسبقا، لا يزال بإ
إن توفير نماذج اللغة المحددة مسبقا مع أوصاف مهمة بسيطة في اللغة الطبيعية تمكنهم من حل بعض المهام بطريقة غير منشأة بالكامل. علاوة على ذلك، عند دمج التعلم المنتظم من الأمثلة، فإن هذه الفكرة تنتج نتائج قليلة رائعة لمجموعة واسعة من مهام تصنيف النص. كما أ