ترغب بنشر مسار تعليمي؟ اضغط هنا

نظام رمزي (في الغالب) للاستدلال الرخيصي مع أشكال منطقية غير مستقرة

A (Mostly) Symbolic System for Monotonic Inference with Unscoped Episodic Logical Forms

322   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقوم بتطبيق إضفاء الطابع الرسمي على الاستدلال الطبيعي الذي يشبه المنطق الطبيعي باستخدام أشكال منطقية غير مستقرة غير مستقرة (ULFS) بواسطة كيم وآخرون.(2020).نوضح قدرة هذا النظام على التعامل مع مجموعة متنوعة من الظواهر الدلالية الصعبة باستخدام DataSet Fracas (Cooper et al.، 1996).تعطي هذه النتائج أدلة تجريبية للمطالبات السابقة أن ULF هو تمثيل مناسب للتوسط في استنتاجات من المنطق الطبيعي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

منطق episodic: نموذج منطقي غير مشدود '' (el-elf) هو تمثيل دلالي يلتقط بنية حجة المسنون وكذلك جوانب أكثر تحديا للغة داخل الشكليات المنطقية الباردة.نقدم النهج المستفاد الأول لأول مرة لتحليل الجمل إلى ULFS، باستخدام مجموعة متزايدة من الأمثلة المشروحة.تو فر النتائج خط أساس قوي للتحسين في المستقبل.تتعلم طريقتنا نموذج تسلسل إلى تسلسل للتنبؤ بتسلسل إجراء الانتقال داخل نظام انتقال ذاكرة التخزين المؤقت المعدلة.نقوم بتقييم فعالية القيود القائمة على القواعد، معجم من كلمة إلى رمز، وميزات ولاية نظام الانتقال في هذه المهمة.نظامنا متاح في https://github.com/genelkim/ulf-transition-parser.ونحن نقدم أيضا بيانات Oulf Oullf الرسمية الأولى في HTTPS://www.cs.rochester.edu/u/gkim21/ulf/resources/.
تقدم هذه الورقة مجموعة بيانات جديدة للفيديو واللغة مع إجراءات بشرية للاستدلال المنطقي متعدد الوسائط، والتي تركز على التعبيرات المتعمدة وجوقية تصف الإجراءات البشرية الديناميكية.تتكون DataSet من 200 فيديو، 5554 ملصقات عمل، و 1،942 ثلاثة توائم عمل من ال نموذج (الموضوع، المسند، كائن) يمكن ترجمته بسهولة إلى تمثيلات دلالية منطقية.من المتوقع أن تكون DataSet مفيدة لتقييم أنظمة الاستدلال متعددة الوسائط بين مقاطع الفيديو والجمل المعقدة الدلوية بما في ذلك النفي والكمية.
تقدم هذه الورقة العمل نفذت لتحويل اللمعان في لغة الإشارة الإيطالية (LIS) إلى نص ثم يقرأه بعد ذلك بواسطة Windows TTS Synthesizer من إصدار تعديل SSML من نفس النص. في حين أن العديد من الأنظمة موجودة تولد لغة الإشارة من نص، قررنا القيام بعملية عكسية وإنش اء نص من LIS. لهذا الغرض، استخدمنا نسخة من القبلات السلحفاة والأرنب، الموقعة والمتاحة على YouTube by Alba Cooperativa Sociale، التي تم تفاحها يدويا من قبل المؤلف الثاني لأطروحة سيدها. من أجل تحقيق هدفنا، قامنا بتحويل المصطلحات متعددة الطبقات إلى شروط ProLolog الخطية التي ستغذيها للمولد. في الورقة نركز على المشكلات الرئيسية التي واجهتها في تحويل اللمعان إلى تمثيل متسق من الناحية الدلوية والبرادة. الناجمة عن المشاكل الرئيسية بسبب تعقيد نص مثل الخرافة التي تتطلب تنفيذ آليات Aquerence و Action الكلام في التمثيل والتي غالبا ما تكون غير مسبوقة وتشكل معلومات ضمنية.
نحن نحقق في ما إذا كان هناك نموذج يمكن أن يتعلم اللغة الطبيعية مع الحد الأدنى من المدخلات اللغوية من خلال التفاعل.معالجة هذا السؤال، نقوم بتصميم وتنفيذ لعبة تعليمية تفاعلية تتعلم التمثيلات الدلالية المنطقية تكوين.تتيح لنا لعبتنا استكشاف فوائد الاستدل ال المنطقي لتعلم اللغة الطبيعية.يوضح التقييم أن النموذج يمكن أن يضيق بدقة التمثيلات المنطقية المحتملة للكلمات على مدار اللعبة، مما يشير إلى أن نموذجنا قادر على تعلم تعيينات معجمية من الصفر بنجاح.
يحقق نماذج اللغة التعلم المستندة عميقا (DL) أداء عال في مختلف المعايير لاستدلال اللغة الطبيعية (NLI).وفي هذا الوقت، يتلقى النهج الرمزية ل NLI اهتماما أقل.كلا النهجين (الرمزي و DL) لديهم مزاياهم وموضعاتهم.ومع ذلك، حاليا، لا توجد طريقة تجمع بينها في نظ ام لحل مهمة NLI.لدمج أساليب التعلم الرمزي والعميقة، نقترح إطار استنتاجي يسمى NeuRallog، والذي يستخدم محرك الاستدلال المنطقي على حد سواء ونموذج لغة الشبكة العصبية لمحاذاة العبارة.نماذج إطار عملنا مهمة NLI كصورة بحث كلاسيكية وتستخدم خوارزمية البحث في شعاع البحث عن مسارات الاستدلال الأمثل.تظهر التجارب أن نظامنا المشترك ومنطق الاستدلال العصبي يحسن الدقة في مهمة NLI ويمكن أن تحقق دقة حديثة على مجموعات البيانات المريضة والمتوسطة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا