في حين أن العديد من خطوط أنابيب NLP تفترض أن النصوص النظيفة النظيفة، فإن العديد من النصوص التي نواجهها في البرية، بما في ذلك الغالبية العظمى من المستندات القانونية، ليست نظيفة للغاية، حيث يجري العديد منهم وثائق منظم بصريا (VSDS) مثل PDF. تقوم الأدوات المعالجة التقليدية ل VSDS تركز بشكل أساسي على تجزئة الكلمات وتحليل التخطيط الخشن، في حين أن تحليل الهيكل المنطقي المحلقات الدقيقة (مثل تحديد حدود الفقرة وهرميها) من VSDS هي غير متكسدة. تحقيقا لهذه الغاية، اقترحنا صياغة المهمة كتنبؤ بملميات الانتقال "بين شظايا الرسائل النصية التي تعرض الشظايا إلى شجرة، وتطوير نظام لتعلم الماكينات المستندة إلى ميزة يمبرص إشارات مرئية ونصية ودلية. يتم تخصيص نظامنا بسهولة إلى أنواع مختلفة من VSDS وكانت خطوط الأساس بشكل كبير في تحديد الهياكل المختلفة في VSDS. على سبيل المثال، حصل نظامنا على درجة الكشف عن حدود الفقرة 0.953 أفضل بكثير من أداة PDF-To-to-todly ذات درجة كبيرة مع درجة F1 من 0.739.
While many NLP pipelines assume raw, clean texts, many texts we encounter in the wild, including a vast majority of legal documents, are not so clean, with many of them being visually structured documents (VSDs) such as PDFs. Conventional preprocessing tools for VSDs mainly focused on word segmentation and coarse layout analysis, whereas fine-grained logical structure analysis (such as identifying paragraph boundaries and their hierarchies) of VSDs is underexplored. To that end, we proposed to formulate the task as prediction of transition labels'' between text fragments that maps the fragments to a tree, and developed a feature-based machine learning system that fuses visual, textual and semantic cues. Our system is easily customizable to different types of VSDs and it significantly outperformed baselines in identifying different structures in VSDs. For example, our system obtained a paragraph boundary detection F1 score of 0.953 which is significantly better than a popular PDF-to-text tool with an F1 score of 0.739.
المراجع المستخدمة
https://aclanthology.org/
منطق episodic: نموذج منطقي غير مشدود '' (el-elf) هو تمثيل دلالي يلتقط بنية حجة المسنون وكذلك جوانب أكثر تحديا للغة داخل الشكليات المنطقية الباردة.نقدم النهج المستفاد الأول لأول مرة لتحليل الجمل إلى ULFS، باستخدام مجموعة متزايدة من الأمثلة المشروحة.تو
تقدم هذه الورقة مجموعة بيانات جديدة للفيديو واللغة مع إجراءات بشرية للاستدلال المنطقي متعدد الوسائط، والتي تركز على التعبيرات المتعمدة وجوقية تصف الإجراءات البشرية الديناميكية.تتكون DataSet من 200 فيديو، 5554 ملصقات عمل، و 1،942 ثلاثة توائم عمل من ال
تعد بيانات المعرفة هائلة وواسعة الانتشار في العالم الحقيقي، والتي يمكن أن تكون بمثابة مصادر خارجية جيدة لإثراء المحادثات. ومع ذلك، في محادثات المعرفة، لا تزال النماذج الحالية تفتقر إلى السيطرة الجميلة على اختيار المعرفة والتكامل مع الحوارات، والتي تؤ
نقدم انبعاثات: منصة لالتقاط التفاعلات متعددة الوسائط كتسجيلات تجارب عرضية مع تفسيرات مرجعية واضحة والتي تسفر عن رسم بياني للمعرفة العرضي (EKG). تقوم المنصة بتخزين تدفقات طرائق متعددة كإشارات متوازية. يتم تجزئة كل إشارة ومشروحة بشكل مستقل مع التفسير.
نحن نبحث عن طرق لإنشاء مفاهيم معقدة في النصوص من تلك البدائية أثناء تأسيسها في الصور.نقترح الرسم البياني للمفهوم والعلاقة (CRG)، والتي تبني أعلى تحليل الدوائر الانتخابية وتتكون من مفاهيم مجتمعة متكررة مع وظائف المسند.وفي الوقت نفسه، نقترح كسبية مفهوم