ترغب بنشر مسار تعليمي؟ اضغط هنا

اكتشاف تعبيرات متعددة الكلمات مع الكلمات المستعارة وما يعادلها في اللغة الفارسية

Discovery of Multiword Expressions with Loanwords and Their Equivalents in the Persian Language

224   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تقدم هذه الورقة محاولة في اكتشاف تعبيرات متعددة الكلمات (MWES) في اللغة الفارسية.وهي تركز على استخراج MWES التي تحتوي على لام من مجموعة معينة: الكلمات المستعارة في الفارسية وما يعادلها التي اقترحتها أكاديمية اللغة الفارسية والأدب.من أجل اكتشاف مثل هذه MWES، يتم استخدام أربع تدابير جمعية (AMS) وتقييمها.أخيرا، يتم تحليل قائمة MWES المستخرجة، ويتم عرض مقارنة بين التعبيرات ذات الكلمات المستعارة وما يعادلها.لمعرفةنا، هذه هي المرة الأولى التي يتم فيها توفير مثل هذا التحليل للغة الفارسية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم استخدام تحلل الطابع الصيني كميزة لتعزيز نماذج الترجمة الآلية (MT)، والجمع بين المتطرفين في طرازات حرف مستوى الكلمة.حققت العمل الحديث في الأيديوجراف أو تضمين مستوى السكتة الدماغية.ومع ذلك، تبقى الأسئلة حول مستويات التحلل المختلفة من تمثيلات الأحرف الصينية، والراديكالية والسكتات الدماغية، والأمن الأكون مناسبة لجبل.للتحقيق في تأثير تضمين التحلل الصيني بالتفصيل، أي المستويات الجذعية والسكتة الدماغية والسكتة الدماغية، ومدى جودة تحلل هذه التحلل معنى تسلسل الأحرف الأصلية، نقوم بإجراء تحليل مع كل من التقييم الآلي والإنساني ل MT.علاوة على ذلك، يمكننا التحقيق في ما إذا كان يمكن أن يعزز مزيج التعبيرات المتعددة الكلمة المتحللة (MWES) التعلم النموذجي.شهدت تكامل MWE في MT أكثر من عقد من الاستكشاف.ومع ذلك، لم يتم استكشاف mwes المتحللة سابقا.
عادة ما تحقق الأساليب الخاضعة للإشراف أفضل أداء في مشكلة غموض معنى الكلمة.ومع ذلك، فإن عدم توفر إحساس كبير مشروح بالنسبة للعديد من اللغات منخفضة الموارد يجعل هذه الأساليب غير قابل للتطبيق لها في الممارسة العملية.في هذه الورقة، نقوم بتخفيف هذه المشكلة باللغة الفارسية من خلال اقتراح نهج أوتوماتيكي بالكامل للحصول على فارسية الفارسية (Bredemcor)، ككائن مشروح من كيس الفارسية (القوس).قمنا بتقييم الصرص على حد سواء بشكل جوهري ودخله وأظهر أنه يمكن استخدامه بفعالية كمجموعات تدريبية لأنظمة WSD الإشرافية الفارسية.لتشجيع البحث في المستقبل على الغموض في مجال الإحساس بالكلمة الفارسية، فإننا نطلق الولادة في http://nlp.sbu.ac.ir.
تم تطبيق نماذج تجزئة الكلمات القائمة على الأحرف على نطاق واسع على اللغات الشاقة، بما في ذلك التايلاندية، بسبب أدائها العالي.هذه النماذج تقدر حدود الكلمات من تسلسل الأحرف.ومع ذلك، فإن وحدة الأحرف في تسلسل ليس لها معنى أساسي، مقارنة بكل وحدات الكتلة ال كلمة والكلمة الفرعية.نقترح نموذج تجزئة الكلمات التايلاندية يستخدم أنواعا مختلفة من المعلومات، بما في ذلك الكلمات والكلمات الفرعية ومجموعات الأحرف، من تسلسل الأحرف.ينطبق نموذجنا على انتباه متعددة لتحسين استنتاجات تجزئة من خلال تقدير العلاقات الكبيرة بين الشخصيات وأنواع الوحدات المختلفة.تشير النتائج التجريبية إلى أن نموذجنا يمكن أن يتفوق على نماذج تجزئة الكلمات التايلاندية الأخرى.
تجزئة الكلمات، مشكلة إيجاد حدود الكلمات في الكلام، تهم مجموعة من المهام.اقترحت الأوراق السابقة أن نماذج تسلسل إلى تسلسل تدربت على مهام مثل ترجمة الكلام أو التعرف على الكلام، ويمكن استخدام الاهتمام لتحديد الكلمات والجزء.ومع ذلك، نوضح ذلك حتى على بيانا ت أحادية النظرة هشة.في تجاربنا ذات أنواع المدخلات المختلفة، أحجام البيانات، وخوارزميات تجزئة، فقط النماذج المدربة على التنبؤ بالهواتف من الكلمات تنجح في المهمة.النماذج المدربة للتنبؤ بالكلف من الهواتف أو الكلام (أي، الاتجاه المعاكس الذي يحتاج إلى تعميم البيانات الجديدة)، يؤدي إلى نتائج أسوأ بكثير، مما يشير إلى أن التجزئة القائمة على الانتباه مفيد فقط في سيناريوهات محدودة.
تصف هذه الورقة أنظمة المقدمة إلى المهمة SE-MEVAL 2021 1: تنبؤ التعقيد المعجمي (LCP).نقارن نماذج الانحدار الخطية وغير الخطية المدربة للعمل في كلا المسارين للمهمة.نظرا لأن كلا النظامين قادرين على التعميم بشكل أفضل عند توفير معلومات حول تعقيدات كلمة واح دة ويعتبر التعبير المتعدد الكلمة (MWE) في وقت واحد.أثبت هذا النهج أنه الأكثر فائدة لأهداف التعبير المتعددة الكلمة.نوضح أيضا أن بعض الميزات المصنوعة يدويا تختلف في أهميتها للأنواع المستهدفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا