ترغب بنشر مسار تعليمي؟ اضغط هنا

تجزئة الكلمات التايلاندية القائمة على الشخصية مع انتباه متعددة

Character-based Thai Word Segmentation with Multiple Attentions

444   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم تطبيق نماذج تجزئة الكلمات القائمة على الأحرف على نطاق واسع على اللغات الشاقة، بما في ذلك التايلاندية، بسبب أدائها العالي.هذه النماذج تقدر حدود الكلمات من تسلسل الأحرف.ومع ذلك، فإن وحدة الأحرف في تسلسل ليس لها معنى أساسي، مقارنة بكل وحدات الكتلة الكلمة والكلمة الفرعية.نقترح نموذج تجزئة الكلمات التايلاندية يستخدم أنواعا مختلفة من المعلومات، بما في ذلك الكلمات والكلمات الفرعية ومجموعات الأحرف، من تسلسل الأحرف.ينطبق نموذجنا على انتباه متعددة لتحسين استنتاجات تجزئة من خلال تقدير العلاقات الكبيرة بين الشخصيات وأنواع الوحدات المختلفة.تشير النتائج التجريبية إلى أن نموذجنا يمكن أن يتفوق على نماذج تجزئة الكلمات التايلاندية الأخرى.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم استخدام أساليب الشبكة العصبية الحديثة الأخيرة (SOTA) وأساليب Neural العصبية الفعالة على أساس النماذج المدربة مسبقا (PTM) في تجزئة الكلمات الصينية (CWS)، وتحقيق نتائج رائعة. ومع ذلك، فإن الأعمال السابقة تركز على تدريب النماذج مع Corpus الثابتة في ك ل تكرار. المعلومات المتوسطة المتوسطة هي أيضا قيمة. علاوة على ذلك، فإن تقلب الأساليب العصبية السابقة محدودة بالبيانات المشروح على نطاق واسع. هناك عدد قليل من الضوضاء في كوربوس المشروح. بذلت جهود محدودة من قبل الدراسات السابقة للتعامل مع هذه المشاكل. في هذا العمل، نقترح نهج CWS الخاضع للإشراف ذاتيا بمعماري مباشر وفعال. أولا، ندرب نموذج تجزئة كلمة واستخدامه لتوليد نتائج التجزئة. بعد ذلك، نستخدم نموذج لغة مصنف منقح (MLM) لتقييم جودة نتائج التجزئة المستندة إلى تنبؤات الامتيازات. أخيرا، نستفيد من التقييمات لمساعدة تدريب القطاع من خلال تحسين الحد الأدنى من التدريب على المخاطر. تظهر النتائج التجريبية أن نهجنا يتفوق على الأساليب السابقة في 9 مجموعات بيانات مختلفة CWS مع تدريب معايير واحدة وتدريب معايير متعددة وتحقيق متانة أفضل.
تم استخدام تحلل الطابع الصيني كميزة لتعزيز نماذج الترجمة الآلية (MT)، والجمع بين المتطرفين في طرازات حرف مستوى الكلمة.حققت العمل الحديث في الأيديوجراف أو تضمين مستوى السكتة الدماغية.ومع ذلك، تبقى الأسئلة حول مستويات التحلل المختلفة من تمثيلات الأحرف الصينية، والراديكالية والسكتات الدماغية، والأمن الأكون مناسبة لجبل.للتحقيق في تأثير تضمين التحلل الصيني بالتفصيل، أي المستويات الجذعية والسكتة الدماغية والسكتة الدماغية، ومدى جودة تحلل هذه التحلل معنى تسلسل الأحرف الأصلية، نقوم بإجراء تحليل مع كل من التقييم الآلي والإنساني ل MT.علاوة على ذلك، يمكننا التحقيق في ما إذا كان يمكن أن يعزز مزيج التعبيرات المتعددة الكلمة المتحللة (MWES) التعلم النموذجي.شهدت تكامل MWE في MT أكثر من عقد من الاستكشاف.ومع ذلك، لم يتم استكشاف mwes المتحللة سابقا.
أسماء ومعرفات المراقبة المنطقية (LOINC) هي مجموعة قياسية من الرموز التي تمكن الأطباء من التواصل حول الاختبارات الطبية.تعتمد المختبرات على Loinc لتحديد ما تختبر طلبات الطبيب للمريض.ومع ذلك، غالبا ما يستخدم الأطباء رموز مخصصة خاصة بالموقع في أنظمة السج لات الطبية التي يمكن أن تشمل اختلافا بالاختصار والأخطاء الإملائية واخترع المختصرات.يجب أن يتم تعيين حلول البرمجيات من هذه الرموز المخصصة إلى معيار Loinc لدعم قابلية التشغيل البيني للبيانات.التحدي الرئيسي هو أن لوينك تتألف من ستة عناصر.التعيين لا يتطلب عدم استخراج هذه العناصر فحسب، بل يجمع بينها أيضا وفقا لمنطق Loinc.وجدنا أن التعلم العميق القائم على الطابع يتفوق عند استخراج عناصر Loinc بينما تكون الأساليب القائمة على المنطق أكثر فعالية للجمع بين هذه العناصر في قيم Loinc كاملة.في هذه الورقة، نقدم مجموعة من التعلم والمنطق والمنطق المستخدم حاليا في العديد من المرافق الطبية في الخريطة من
تظهر الأبحاث الحديثة أن النماذج المدربة مسبقا (PTMS) مفيدة تجزئة الكلمات الصينية (CWS).ومع ذلك، فإن PTMS المستخدمة في الأعمال السابقة عادة ما تعتمد نمذجة اللغة كامرأة تدريبية مسبقا، تفتقر إلى معرفة تجزئة مسبقة خاصة بمهام المهام وتجاهل التناقض بين مها م ما قبل التدريب ومهام CWS المصب.في هذه الورقة، نقترح MetASE مطلقا مدربا مسبقا مسبقا CWS، والذي توظف هندسة موحدة ويشمل خوارزمية التعلم المعتوية في مهمة ما قبل التدريب متعدد المعايير.تظهر النتائج التجريبية أن METASEG يمكن أن تستخدم معرفة تجزئة مسبقة مشتركة من المعايير الحالية المختلفة وتخفيف التناقض بين النماذج المدربة مسبقا ومهام CWS المصب.علاوة على ذلك، يمكن أن يحقق MetASEG أداء جديدا على أحدث بيانات CWS المستخدمة على نطاق واسع وتحسين أداء النموذج بشكل كبير في إعدادات الموارد المنخفضة.
من الصعب للغاية ترجمة لغات Dravidian، مثل Kannada و Tamil، على ترجمة النماذج العصبية الحديثة.ينبع هذا من حقيقة أن هذه اللغات غنية بالمثل للغاية بالإضافة إلى توفير الموارد منخفضة الموارد.في هذه الورقة، نركز على تجزئة الكلمات الفرعية وتقييم الحد من الم فردات الدوافع اللغوية (LMVR) مقابل الجملة الأكثر استخداما (SP) لمهمة الترجمة من اللغة الإنجليزية إلى أربعة لغات Dravidian مختلفة.بالإضافة إلى ذلك، نحقق في حجم المفردات الفرعية المثلى لكل لغة.نجد أن SP هو الخيار الأكثر شمولا للتجزئة، وأن أحجام القاموس الأكبر تؤدي إلى جودة الترجمة الأعلى.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا