ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين تلخيص الجماعي مع معرفة المنطقية

Improving Abstractive Summarization with Commonsense Knowledge

259   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

أظهرت نماذج واسعة النطاق على نطاق واسع عروضا قوية على العديد من توليد اللغة الطبيعية وفهم المعايير.ومع ذلك، فإن إدخال العمولة فيها لتوليد نص أكثر واقعية يظل تحديا.مستوحاة من العمل السابق على جيل المعرفة المنطقي ومنطق العموم التوليد، نقدم طريقتين لإضافة مهارات ومعرفة المنطق المنطقي إلى نماذج تلخيص مبادرة.فازت هذه الطريقة على خط الأساس على درجات الحمر، مما يدل على تفوق نماذجنا على أساس الأساس.تشير نتائج التقييم البشري إلى أن الملخصات الناتجة عن طريقتنا أكثر واقعية ولديها أخطاء معدلة أقل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

مع الوفاء المتزايد من نصوص الاجتماعات، اجتذبت ملخص الاجتماع المزيد والمزيد من الاهتمام من الباحثين. حققت طريقة التدريب المسبق غير المعروضة على أساس هيكل المحولات المبلغة مع ضبط المهام المصب الناجمة نجاحا كبيرا في مجال تلخيص النص. ومع ذلك، فإن الهيكل الدلالي وأسلوب حقول الاجتماع يختلف تماما عن مقالات. في هذا العمل، نقترح شبكة فك ترميز ترميز ترميز هيرسلجية ذات مهام مسبقة مهام متعددة. على وجه التحديد، نحن نخفي الجمل الرئيسية في تشفير مستوى الكلمات وتوليدها في وحدة فك الترميز. علاوة على ذلك، نقع بشكل عشوائي بعض محاذاة الدور في نص الإدخال وإجبار النموذج على استعادة علامات الدور الأصلية لإكمال المحاذاة. بالإضافة إلى ذلك، نقدم آلية تجزئة موضوعا لمواصلة تحسين جودة الملخصات التي تم إنشاؤها. تظهر النتائج التجريبية أن طرازنا متفوق على الأساليب السابقة في مجموعات بيانات ملخص الاجتماع AMI و ICSI.
على الرغم من التقدم الكبير في تلخيص الجماع العصبي، أظهرت الدراسات الحديثة أن النماذج الحالية عرضة لإنشاء ملخصات غير مخلصة للسياق الأصلي. لمعالجة المشكلة، نقوم بدراسة توليد واختيار مرشح النقيض كتقنية نطاقات ما بعد المعالجة النموذجية لتصحيح الهلوسة الخ ارجية (I.E. المعلومات غير موجودة في نص المصدر) في ملخصات غير مخلصة. نتعلم نموذج تصحيح تمييزي عن طريق توليد ملخصات مرشحة بديلة حيث يتم استبدال الكيانات والكميات المسماة في الملخص الذي تم إنشاؤه بأشياء مع أنواع دلالية متوافقة من المستند المصدر. ثم يتم استخدام هذا النموذج لتحديد أفضل مرشح كملخص الناتج النهائي. تبين تجاربنا وتحليلنا عبر عدد من أنظمة التلخيص العصبية أن طريقةنا المقترحة فعالة في تحديد وتصحيح الهلوسة الخارجية. نقوم بتحليل ظاهرة الهلوسة النموذجية لأنواع مختلفة من أنظمة التلخيص العصبية، ونأمل أن تقدم رؤى للعمل في المستقبل على الاتجاه.
حققت نماذج التسلسل العصبي (SEQ2SEQ) ونماذج بيرت تحسينات كبيرة في تلخيص وثائق المبادرة (الإعلانات) دون ومع مسبق التدريب، على التوالي.ومع ذلك، فإنهم يحضرون في بعض الأحيان مرارا وتكرارا عبارات المصدر غير مهم بينما يتجاهل عن طريق الخطأ تلك المهمة.نقدم آل يات إعادة الإعمار على مستويين لتخفيف هذه المشكلة.يعيد إعادة تعيين مستوى التسلسل على مستوى التسلسل الوثيقة بأكملها من الطبقة المخفية من الملخص المستهدف، في حين أن كلمة تضمين المستوى يعيد إعادة إنشاء واحد من متوسط كلمة Word للمصدر في الجانب المستهدف لضمان إدراج أكبر قدر ممكن من المعلومات الهامة في الملخصبقدر الإمكان.بناء على افتراض تقيس تدابير تردد الوثيقة العكسية (IDF) مدى أهمية كلمة كلمة، فإننا نستفيد إلى زيادة أوزان جيش الدفاع الإسرائيلي في إعادة بناء مستوى التضمين لدينا.تؤدي الأطر المقترحة إلى تحسينات واعدة لمقاييس الحمر والتصنيف البشري على مجموعات بيانات تلخيص CNN / Daily البريدية وحكم الأخبار.
النعالة عبارة عن مبالغة متعمدة وإبداعية لا تؤخذ حرفيا.على الرغم من كل مكانه في الحياة اليومية، فإن الاستكشافات الحسابية من النعالة نادرة.في هذه الورقة، نتعامل مع المهمة غير المستكشفة والتحديات: توليد بطول الأغلبية على مستوى الجملة.نبدأ بنمط نصي تمثيل ي للتكثيف والدراسة بشكل منهجي العلاقات الدلالية (المنطقية وغير المصنفة) بين كل مكون في مثل هذه المفرط.بعد ذلك، فإن الاستفادة من المنطقي والاستدلال المضاد لإنتاج مرشحين غاضبين يستند إلى نتائجنا من النمط، وتدريب الأقراص العصبية على الترتيب وتحديد Hyperboles عالية الجودة.تبين التقييمات التلقائية والبشرية أن طريقة جيلنا قادرة على توليد فرط النعثال مع ارتفاع معدل النجاح والكثافة والتموية والإبداع.
في هذه الورقة، ندرس تلخيص الجملة المبادرة.هناك ميزان معلومات أساسية يمكن أن تؤثر على جودة تلخيص الأخبار، والتي هي الكلمات الرئيسية للموضوع والهيكل المعرفي لنص الأخبار.علاوة على ذلك، فإن تشفير المعرفة الموجودة لديها أداء ضعيف في هيكل المعرفة بالقضاء ا لسريع.بالنظر إلى هذه، نقترح KAS، ومعرفة رواية وتحويل الكلمات الرئيسية المعزز بإطار تلخيص الجملة المبادرة.يتم استخدام Tri-Encoders لإدماج سياقات النص الأصلي وهيكل المعرفة وموضوع الكلمات الرئيسية في وقت واحد، مع بنية معرفة خطية خاصة.التقييمات التلقائية والبشرية تثبت أن KAS تحقق أفضل العروض.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا