ترغب بنشر مسار تعليمي؟ اضغط هنا

التصنيف والتعلم الدلالي باستخدام نموذج تحول خطي في نظرية نوع الاحتمالية مع السجلات

Semantic Classification and Learning Using a Linear Tranformation Model in a Probabilistic Type Theory with Records

204   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

بدءا من حساب موجود للتصنيف الدلالي والتعلم من التفاعل المصنوع في نظرية النوع الاحتمالية مع السجلات، يشمل الاستدلال بايزي والتعلم بنكهة متكررة، نلاحظ بعض المشاكل في هذا الحساب وتقديم حساب بديل للتعلم التصنيف الذي يعالج الملاحظمشاكل.الحساب المقترح هو أيضا بايزيا على نطاق واسع في الطبيعة ولكن بدلا من ذلك يستخدم نموذج تحويل خطي للتصنيف والتعلم.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقترح حساب احتمامي للتناسم الدلالي والتصنيف المصنوع من حيث نظرية النوع الاحتمالية مع السجلات، والبناء على كوبر وآخرون.آل.(2014) وكوبر وآخرون.آل.(2015).نقترح أن نقترح تركيبات نظرية من النوع الاحتمالية من أسلاك بايس، وشبكات بايزيان.العنصر المركزي في هذ ه المنشآت هو نسخة نظرية من النوع من متغير عشوائي.نوضح هذا الحساب مع لعبة لغة بسيطة تجمع بين التصنيف الاحتمالي للمدخلات الإحصائية مع الاستدلال الاحتمالية (الدلالي).
في هذه الورقة، نقترح نموذجا طبيعيا عالميا لتحليل القواعد النحوية الخالية من السياق (CFG).بدلا من التنبؤ باحتمال، يتوقع نموذجنا درجة حقيقية في كل خطوة ولا تعاني من مشكلة تحيز التسمية.تظهر التجارب أن نهجنا تفوق النماذج الطبيعية محليا على مجموعات البيان ات الصغيرة، لكنها لا تسفر عن تحسن على مجموعة بيانات كبيرة.
التصنيف العاطفي هو مهمة ربط النص تلقائيا بمشاعر بشرية.عادة ما يتم تعلم النماذج من أحدث النماذج باستخدام كورسا المشروح أو الاعتماد على المعجم العاطفي المصنوعة يدويا.نقدم نموذج تصنيف العاطفة لا يتطلب أن تكون كوربوس مشروحة كبيرة تنافسية.نقوم بتجربة نماذ ج اللغة المسبقة مسبقا في كل من طلقة صفرية وعدد قليل من التكوين.نبني العديد من هذه النماذج ونظرا لهم بأنها متحيزة، صاخبة صاخبة، أدائها الفردي ضعيف.نحن نكمل تنبؤات هذه النماذج باستخدام طريقة بايزي تطورت أصلا لشرائيات النمذجة الجماعية.بعد ذلك، نظهر أن النظام الناتج يؤدي أفضل من أقوى النموذج الفردي.أخيرا، نظهر أنه عند التدريب على عدد قليل من البيانات المسمى، تتفوق أنظمتنا النماذج الخاضعة للإشراف بالكامل.
غالبا ما تستخدم أنظمة المحادثة الموجهة نحو المهام تتبع حالة الحوار لتمثيل نوايا المستخدم، والتي تنطوي على ملء قيم فتحات محددة مسبقا.تم اقتراح العديد من النهج، وغالبا ما تستخدم الهندسة المعنية بمهام المهام مع مصنفات ذات الأغراض الخاصة.في الآونة الأخير ة، تم الحصول على نتائج جيدة باستخدام هياكل عامة أكثر بناء على نماذج اللغة المحددة مسبقا.هنا، نقدم اختلافا جديدا لنهج نمذجة اللغة التي تستخدم مطالبة مخطط مدفوعة بتوفير ترميز التاريخ على علم المهام المستخدمة لكل من الفتحات الفئوية وغير القشرية.ونحن كذلك تحسين الأداء من خلال زيادة المطالبة بأوصاف المخطط، وهو مصدر حدوث طبيعي للمعرفة داخل المجال.لدينا نظام التوليد البحت يحقق الأداء الحديثة في MultiWoz 2.2 وتحقق أداء تنافسي على اثنين من المعايير الأخرى: MultiWoz 2.1 و M2M.ستكون البيانات والرمز متاحة في https://github.com/chiahsuan156/dst-as-prompting.
يعد تحليل الإطار الدلالي مهمة تحليل دلالية تعتمد على Framenet التي تلقت اهتماما كبيرا مؤخرا.تتضمن المهمة عادة ثلاث مجموعات فرعية بالتتابع: (1) التعرف المستهدف، (2) تصنيف الإطار و (3) وصف الدور الدليمي.ترتبط المهارات الفرعية الثلاثة ارتباطا وثيقا أثنا ء وجود دراسات سابقة طرازها بشكل فردي، مما يتجاهل اتصالاتهم المتدربين، وفي الوقت نفسه يحث مشكلة نشر الأخطاء.في هذا العمل، نقترح نموذج عصبي نهاية إلى نهائي لمعالجة المهمة بشكل مشترك.بشكل ملموس، استغلنا طريقة قائمة على الرسم البياني، فيما يتعلق بتحليل الإطار الدلالي كمشكلة بناء الرسم البياني.يتم التعامل مع جميع المسندات والأدوار كجزء رسم بياني، ويتم أخذ علاقاتهم كحواف رسم بياني.نتائج التجربة على مجموعة بيانات قياسية من الإطار الدلالي تظهر أن طريقتنا تنافسية للغاية، مما يؤدي إلى أداء أفضل من نماذج خطوط الأنابيب.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا