تقدم هذه الورقة مساعينا لحل المهام 11، NLPContribeGraph، Semeval-2021. كان الغرض من المهمة استخراج ثلاث مرات من ورقة في مجال معالجة لغة الطبيعة لإنشاء رسم بياني لمعرفة بحث مفتوح. تتضمن المهمة ثلاثة مهام فرعية: اكتشاف أحكام المساهمة في الأوراق وتحديد العبارات العلمية والعبارات المسندة من أحكام المساهمة؛ واستنتاج ثلاث مرات في شكل (الموضوع، المسند، كائن) كبيانات لبناء الرسم البياني المعرفة. في هذه الورقة، نطبق مجموعة من مختلف نماذج اللغة المدربة مسبقا بشكل جيد (PLM) للمهام واحدة واثنين. بالإضافة إلى ذلك، يتم اعتماد أساليب التدريب الذاتي لمعالجة النقص في البيانات المشروح. للمهمة الثالثة، بدلا من استخدام هياكل استخراج المعلومات المفتوحة الكلاسيكية (OIE) الكلاسيكية، فإننا نولد ثلاث مرات محتملة عبر القواعد المصممة يدويا وتطوير مصنف ثنائي للتمييز بين الآخرين من الآخرين. تظهر النتائج الكمية أننا نحصل على المرتبة الرابعة والثانية والثانية في ثلاث مراحل تقييم.
This paper presents our endeavor for solving task11, NLPContributionGraph, of SemEval-2021. The purpose of the task was to extract triples from a paper in the Nature Language Processing field for constructing an Open Research Knowledge Graph. The task includes three sub-tasks: detecting the contribution sentences in papers, identifying scientific terms and predicate phrases from the contribution sentences; and inferring triples in the form of (subject, predicate, object) as statements for Knowledge Graph building. In this paper, we apply an ensemble of various fine-tuned pre-trained language models (PLM) for tasks one and two. In addition, self-training methods are adopted for tackling the shortage of annotated data. For the third task, rather than using classic neural open information extraction (OIE) architectures, we generate potential triples via manually designed rules and develop a binary classifier to differentiate positive ones from others. The quantitative results show that we obtain the 4th, 2nd, and 2nd rank in three evaluation phases.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة النظام الفائز في مرحلة خطوط الأنابيب الطرفية للمهمة NLPConTribeGraph.يتكون النظام من ثلاث نماذج قائمة على بيرت وتستخدم النماذج الثلاثة لاستخراج الجمل والكيانات والألعاب الثلاثية على التوالي.تظهر التجارب أن أخذ العينات والتدريب الخصم يم
تصف هذه الورقة نظام Duluth الذي شارك في مهمة Semeval-2021 11، الرسم البياني للمساهمة NLP.وتفصل في استخراج جمل المساهمة والكيانات العلمية وعلاقاتها من المقالات العلمية في مجال معالجة اللغة الطبيعية.يستخدم حلنا Deberta لتصنيف الجملة المتعدد الفوضى لاست
يبذل الأبحاث في معالجة اللغة الطبيعية تطورات سريعة، مما يؤدي إلى نشر عدد كبير من الأوراق البحثية. العثور على أوراق بحثية ذات صلة ومساهمتها في المجال هي مشكلة صعبة. في هذه الورقة، نتعلم هذا التحدي عبر مهمة Semeval 2021 11: NLPConTributiongraph، من خلا
نقترح سلسلة من النماذج العصبية التي تنفذ تصنيف الجملة، والاعتراف العبارة، واستخراج ثلاثي لإجراء المساهمات العلمية تلقائيا من منشورات NLP. لتحديد أحكام المساهمة الأكثر أهمية في ورقة، استخدمنا مصنف مقرا له بالميزات الموضعية (SubTask 1). تم استخدام نموذ
في هذا التقرير الفني، وصفنا أن خط أنابيب ASR-MT المصنف الذي تم ضبطه على المهمة المشتركة IWSLT.نقوم بإزالة عينات الكلام الأقل فائدة عن طريق فحص WER مع نموذج ASR، وتدريب أحدث وحدة ASR القائمة على WAV2VEC ومقرها المحولات بناء على البيانات المرتبطة.بالإض