في هذا التقرير الفني، وصفنا أن خط أنابيب ASR-MT المصنف الذي تم ضبطه على المهمة المشتركة IWSLT.نقوم بإزالة عينات الكلام الأقل فائدة عن طريق فحص WER مع نموذج ASR، وتدريب أحدث وحدة ASR القائمة على WAV2VEC ومقرها المحولات بناء على البيانات المرتبطة.بالإضافة إلى ذلك، نقوم بتخفيف Errata التي يمكن أن تتداخل مع عملية الترجمة الآلية واستخدامها لتدريب وحدة MT القائمة على المحولات.أخيرا، في مرحلة الاستدلال الفعلي، نستخدم نموذج اكتشاف حدود الجملة المدرب مع بيانات مقيدة لدمج مخرجات ASR بشكل صحيح في جمل كاملة.تتم معالجة الجمل المدمجة باستخدام جزء من الكلام.يتم تحقيق النتيجة النهائية من قبل وحدة MT المدربة.يعرض الأداء باستخدام مجموعة DEV Bleu 20.37، وهذا النموذج يسجل أداء Bleu 20.9 مع مجموعة الاختبار.
In this technical report, we describe the fine-tuned ASR-MT pipeline used for the IWSLT shared task. We remove less useful speech samples by checking WER with an ASR model, and further train a wav2vec and Transformers-based ASR module based on the filtered data. In addition, we cleanse the errata that can interfere with the machine translation process and use it for Transformer-based MT module training. Finally, in the actual inference phase, we use a sentence boundary detection model trained with constrained data to properly merge fragment ASR outputs into full sentences. The merged sentences are post-processed using part of speech. The final result is yielded by the trained MT module. The performance using the dev set displays BLEU 20.37, and this model records the performance of BLEU 20.9 with the test set.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة Kit'SubImission إلى مهمة ترجمة الكلام IWSLT 2021 دون اتصال بالإنترنت.وصفنا نظاما في كل من الحالة المتتالية وحالة نهاية إلى النهاية.في الحالة المتتالية، حققنا في معماريات مختلفة من نهاية إلى نهاية لوحدة التعرف على الكلام.لوحدة تجزئة الن
توضح هذه الورقة تقديم IWSLT-St المجموعة ESPNET-St Group في مسار ترجمة الكلام دون اتصال بالإنترنت. لقد بذلنا هذا العام جهود مختلفة على تدريب البيانات والهندسة المعمارية وتجزئة الصوت. على جانب البيانات، التحقق في تقطير المعرفة على مستوى التسلسل (SEQKD)
في هذه الورقة، وصفنا تقديم جامعة تشجيانغ إلى مهمة ترجمة الكلام متعددة اللغات IWSLT2021.تركز هذه المهمة على بحث ترجمة الكلام (ST) عبر العديد من لغات المصدر غير الإنجليزية.يمكن للمشاركين أن يقرروا ما إذا كانوا سيعملون على أنظمة مقيدة أو أنظمة غير مقيدة
توضح هذه الورقة تقديم نظام الترجمة من Niutrans End-tou-end الكلام للمهمة غير المتصلة IWSLT 2021، والتي تترجم من الصوت الإنجليزي إلى النص الألماني مباشرة دون نسخ متوسط.نحن نستخدم الهندسة المعمارية النموذجية القائمة على المحولات وتعزيزها عن طريق مطابقة
تصف الورقة أنظمة ترجمة الكلام (ST) ولكن الإنجليزية إلى الألمانية. وهي تستند إلى نماذج الترجمة الآلية المعرونة التي تم تدريبها بشكل مشترك. يتم تقييم أدائها على مجموعة اختبار MUSTC المشتركة. في هذا العمل، ندرس كفاءتها من وجهة نظر وجود كمية كبيرة من بيا