تقدم هذه الورقة أحد أنظمة المحلول الفائزة الأعلى للمهمة 7 في Semeval2021، Hahackathon: الكشف عن الفكاهة والعموم. تنقسم هذه المسابقة إلى مهام اثنين، Task1 مع ثلاث مهام فرعية 1A، 1B، و 1C، و TASK2. الهدف من المهمة 1 هو التنبؤ إذا كان النص يعتبر روح الدعابة أم لا، وإذا كان الأمر نعم، فقم بالتنبؤ بمكام روح الدعابة وما إذا كان التصنيف فكاهة سيكون مثيرا للجدل. الهدف من المهمة 2 هو التنبؤ بكيفية اعتبار النص مسيئا للمستخدمين بشكل عام. تم تطوير حلنا باستخدام نموذج روبرتا المدرب مسبقا مع تقنيات الفرقة. تصف الورقة بنية نظام الحل المقدم مع التجارب وضبط فرط الضغط الذي أدى إلى هذا النظام القوي. في المرتبة النموذجية المرتبة الثالثة والرابعة من 50 فريقا في المهام 1C و 1A مع درجة F1 0.6270 و 0.9675 على التوالي. في الوقت نفسه، احتل النموذج واحدا من أفضل 10 نماذج في المهمة 1B والمهمة 2 مع درجات RMSE من 0.5446 و 0.4469 على التوالي.
This paper presents one of the top winning solution systems for task 7 at SemEval2021, HaHackathon: Detecting and Rating Humor and Offense. This competition is divided into two tasks, task1 with three sub-tasks 1a,1b, and 1c, and task2. The goal for task1 is to predict if the text would be considered humorous or not, and if it is yes, then predict how humorous it is and whether the humor rating would be perceived as controversial. The goal of the task2 is to predict how the text is considered offensive for users in general. Our solution has been developed using RoBERTa pre-trained model with ensemble techniques. The paper describes the submitted solution system's architecture with the experiments and the hyperparameter tuning that led to this robust system. Our model ranked third and fourth places out of 50 teams in tasks 1c and 1a with F1-Score of 0.6270 and 0.9675, respectively. At the same time, the model ranked one of the top 10 models in task 1b and task 2 with an RMSE scores of 0.5446 and 0.4469, respectively.
المراجع المستخدمة
https://aclanthology.org/
تقدم هذه المقالة تقديم الفرعية 1 و SubTask 2 الذي نشارك فيه في مهمة Semeval-2021 7: Hahackathon: الكشف عن الفكاهة والعموم، نحن نستخدم نموذجا يعتمد على ألبرت يستخدم ألبرت كوحدة لاستخراج ميزات النص.نقوم بتعديل هيكل الطبقة العليا عن طريق إضافة شبكات محد
التعرف الفكاهي هو مهمة صعبة في معالجة اللغة الطبيعية.تقدم هذه الوثيقة مناهجاتي للكشف عن الفكاهة والجريمة من النص المحدد.تتضمن هذه المهمة مهام 2: المهمة 1 التي تحتوي على 3 مجموعات فرعية (1A، 1B، و 1C)، والمهمة 2. يمكن اعتبار 1A SubTask 1A و 1C مشاكل ا
تقدم هذه الورقة تقديم Duluthnlp إلى المهمة 7 من مسابقة Semeval 2021 بشأن الكشف عن الفكاهة والجريمة تصنيفها.في ذلك، نوضح النهج المستخدم لتدريب النموذج مع عملية ضبط النموذج الخاص بنا في الحصول على النتائج.ونحن نركز على الكشف عن الفكاهة والتصنيف والتصني
تصف هذه الورقة النظام المستخدم للكشف عن الفكاهة في النص.يستخدم النظام الذي طوره فريق Techssn تقنيات التصنيف الثنائية لتصنيف النص.تخضع البيانات للبيانات المعالجة المسبقة وتعطى لكولبرت (التفاعل المتأخر السياسي على بيرت)، وهو تعديل تمثيل التشفير ثنائي ا
Semeval 2021 المهمة 7، Hahackathon، كانت أول مهمة مشتركة للجمع بين المجالات المنفصلة سابقا من الكشف عن الفكاهة والكشف عن الجريمة. جمعنا 10000 نص من تويتر ومجموعات بيانات النكات القصيرة في Kaggle، وكان كل منها مشروح من الفكاهة والجريمة بمقدار 20 حديثا